
Bits & Bytes
No.208, December 2021

Computer Bulletin of the Max Planck Computing and Data Facility (MPCDF)∗

https://docs.mpcdf.mpg.de/bnb

High-performance Computing

Termination of general user operation for
Draco login nodes
As announced previously, starting from January 10, 2022
access to the Draco login nodes will be restricted to the
users belonging to institutes which own dedicated Draco
nodes; namely the Fritz Haber Institute, the Max Planck
Institute for the Structure and Dynamics of Matter, and
the Max Planck Institute for Animal Behaviour. The file
systems /draco/u and /draco/ptmp will stay available on
Cobra and Raven until further notice.

Renate Dohmen

Announcement of CUDA no-defaults on
Cobra and Raven
Please note that in the near future you will need to spec-
ify an explicit version when loading the “cuda” module,
just as is already required for the Intel compiler and MPI
modules. This will be enforced after the next mainte-
nance window and a plain module load cuda will fail, then.
Instead, use

module load cuda /11.2

to load version 11.2 explicitly, for example. In case you
need to load the “cuda” module for your jobs, please
adapt your job scripts already now. The actual dates of
the maintenances will be announced in due time.

Sebastian Ohlmann, Klaus Reuter

Usage of /tmp and /dev/shm on Cobra
and Raven
On the HPC systems at MPCDF neither the /tmp file
system nor the TMPDIR environment variable should be
used for storing scratch data. Instead, the /ptmp direc-
tory which is accessible as a parallel file system from all
compute nodes is provided for such purposes. On the
other hand some applications require access to the local
file system on the compute nodes for storing temporary

files. In this case the /tmp or /dev/shm directories can be
used. Since RAM is significantly faster than disk storage,
it is advantageous to use /dev/shm instead of /tmp for
higher I/O performance. This becomes important when
an application extensively uses temporary files, e.g. for
interprocess communication through files. For such cases
users can use the variables JOB_TMPDIR and JOB_SHMTMPDIR
in their batch scripts, which are set individually for each
job. For codes which use the variable TMPDIR it is rec-
ommended to set it like TMPDIR=$JOB_TMPDIR. Using the
variables JOB_TMPDIR and JOB_SHMTMPDIR guarantees that all
temporary files stored in these temporarily created direc-
tories will be cleaned after the job has finished. Note,
that the Raven HPC cluster is a diskless system, therefore
the /tmp directory can be used only for files which do
not exceed 2 GB in total.

Mykola Petrov

Eigensolver library ELPA
Further enhancements of the eigensolver library ELPA can
be found in the ELPA release 2021.05.001. This version
includes extensions of the infrastructure for GPU usage,
such that AMD GPUs are now fully supported, and an ini-
tial (experimental) support for Intel GPUs has been added.
The hybrid usage of MPI and OpenMP has also been im-
proved: ELPA now can automatically detect which level of
thread support (such as “MPI_THREAD_SERIALIZED”
or “MPI_THREAD_MULTIPLE”) is available in the
MPI library used, and ELPA adapts the OpenMP par-
allelisation accordingly. The ELPA library is publicly
available as open-source software and can be downloaded
from the ELPA git repository1 hosted by the MPCDF.
A new release 2021.11.001 of ELPA is currently being
prepared and the new version will be available on the
MPCDF systems within the next days. Among others,
the new release will feature imporved support for Nvidia
A100 GPUs, the option to use non-blocking MPI collec-
tives, and a faster implementation of the autotuning.

Andreas Marek, Hermann Lederer
∗Editors: Dr. Renate Dohmen & Dr. Markus Rampp, MPCDF
1https://elpa.mpcdf.mpg.de

https://elpa.mpcdf.mpg.de

Bits & Bytes No.208, December 2021 2

Using Python-based hybrid-parallel codes
on HPC systems
NumPy and SciPy are arguably the most important base
packages when it comes to scientific computing with
Python. Most Python-based packages in HPC and in
HPDA/AI use them, and in doing so leverage the high-
performance and implicit thread parallelization these
packages provide. Typically, NumPy is linked to a highly
optimized math library such as Intel MKL which auto-
matically parallelizes using threads.

Care has to be taken when additional process-based layers
of parallelism are employed on top. Python’s ‘multipro-
cessing’ and ‘mpi4py’ are to be named in this context,
and moreover high-level parallelization frameworks such
as ‘dask’ or ‘ray’. In each case, processes are spawned by
such packages to distribute and parallelize work. It is cru-
cial to limit the number of threads used by each of these
processes in order to avoid overloading of the compute
resources. In many cases, on each process the NumPy-
internal threading would just use the total number of
cores logically available on the system, independently of
the other processes running on the same system.

To give a simple example for the Raven system with

72 cores per node, a multiprocessing-based code with
72 worker processes would use several thousand threads
in total if each worker internally used NumPy naively,
leading to very bad overall performance and to potential
harm to the stability of the compute node. Obviously, in
this example each worker process would need to cap the
number of threads to 1.

To limit the number of threads NumPy and similar
threaded packages are using, set the influential environ-
ment variables accordingly in your job scripts before
launching the Python code. Such variables are for exam-
ple OMP_NUM_THREADS, MKL_NUM_THREADS, NUMEXPR_NUM_THREADS,
and NUMBA_NUM_THREADS. Some packages support function
calls to set the number of threads. For more details, please
consult the documentation of the packages you’re using.
Example scripts for important use cases are given in the
user guides for the HPC systems, e.g. for Raven2. Simi-
lar to the Python cases for which such issues have been
seen many times on the HPC systems recently, the same
argument applies to Julia-based codes and in general to
any hybrid code including the canonical MPI+OpenMP
setup.

Klaus Reuter

Python bindings for C++ using pybind11 and scikit-build

With the rising popularity of the Python programming
language it has become increasingly important for com-
putational scientists to be able to make their software
easily available to the Python ecosystem and community.
Historically, exposing compiled extensions from C/C++
to Python has often been cumbersome, error prone and
technically challenging, given the plethora of compilers,
libraries and relevant target platforms developers have to
deal with. The present article introduces a combination of
two Python packages that promise to make this daunting
task much easier and more stable. First, the pybind113

header-only library provides a convenient approach to
generate Python bindings for existing or newly developed
C++ code. Second, the scikit-build4 package can be used
to bridge Python’s setuptools with CMake5, leveraging
the power of CMake for the build process of the Python
extension. As a result, CMake’s native features such as
discovering and linking of numerical libraries, dependency
management, support of various build-generators, or even
cross-compilation can easily be taken advantage of during
the build process of the Python extension. A key advan-

tage is that the file ‘setup.py’ stays minimal and simple,
instead the aforementioned complexities are handled by
CMake.

The basic usage of pybind11 in combination with scikit-
build is demonstrated below by means of a simple Python
extension package. The code example can be obtained
from the MPCDF GitLab6.

Interfacing Python/NumPy with C++ using py-
bind11

pybind11 is a header-only library that provides conver-
sion from C/C++ types to Python, and vice versa. The
following C++ Python extension module demonstrates
its use in combination with NumPy arrays.

// Python example module 'cumsum '
include <numeric >
include <functional >
include <pybind11/pybind11.h>
include <pybind11/numpy.h>

namespace py = pybind11;

2https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html#single-node-example-job-scripts-for-sequential-programs-
plain-openmp-cases-python-julia-matlab

3https://github.com/pybind/pybind11
4https://github.com/scikit-build/scikit-build
5https://cmake.org/
6https://gitlab.mpcdf.mpg.de/sebak/pybind11-hello-world

https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html#single-node-example-job-scripts-for-sequential-programs-plain-openmp-cases-python-julia-matlab
https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html#single-node-example-job-scripts-for-sequential-programs-plain-openmp-cases-python-julia-matlab
https://github.com/pybind/pybind11
https://github.com/scikit-build/scikit-build
https://cmake.org/
https://gitlab.mpcdf.mpg.de/sebak/pybind11-hello-world

Bits & Bytes No.208, December 2021 3

// numpy -like cumulative sum , taking a NumPy
// array as input and returning a NumPy array
py::array_t <double > cumsum(py::array_t <double > a)
{

// obtain information about the n-d
// input array
auto shape = a.request (). shape;
size_t count = std:: accumulate(shape.begin(),
shape.end(), 1, std::multiplies <size_t >());
// create output array
py::array_t <double > b(count);
// obtain raw pointers
double * a_p = (double *) a.request (). ptr;
double * b_p = (double *) b.request (). ptr;
// compute cumulative sum into b
double cs = 0.0;
for (size_t i = 0; i<count; ++i) {

cs += a_p[i];
b_p[i] = cs;

}
return b;

}

PYBIND11_MODULE(_cumsum , m) {
// module docstring
m.doc() = "pybind11␣cumulative␣sum␣example";
// function definition
// third parameter is the function docstring
m.def("cumsum", &cumsum ,

"return␣cumulative␣sum␣of␣array");
}

The example C++ code implements a simple cumulative
sum computation similar to the one provided by NumPy.
The binary Python module is labeled ’_cumsum’ which
we wrap into ‘cumsum’ (not shown here, cf. the GitLab
repository). Our ‘cumsum’ example module can finally
be used and tested as follows:
import numpy as np
import cumsum
a = np.random.rand (20)
b = cumsum.cumsum(a)
c = np.cumsum(a)
assert(np.allclose(b, c))

In order for this example to be compiled, the pybind11
headers (as any other potential dependency) must be
available. pybind11 can be installed in several ways7,
and it natively supports various build systems8. However
using scikit-build provides a particularly easy approach
which is shown in the following.

Build with scikit-build

The package scikit-build provides a drop-in replacement
for the setuptools.setup function that can be used in a
project’s ‘setup.py’ via

from skbuild import setup

Beside the standard setuptools options, it provides ex-
tra options9 to control the CMake build. In addition, a
minimal ‘CMakeLists.txt’ file must be available in the
top-level directory of the project, e.g.:

cmake_minimum_required(VERSION 3.18)
project(pybind11 -hello -world VERSION "1.0")
find_package(pybind11)

pybind11_add_module(_cumsum MODULE
src/cumsum/cumsum.cpp)

install(TARGETS _cumsum DESTINATION .)

Build-system dependencies have to be specified via the
project’s ‘pyproject.toml’ file:

[build -system]
requires = [

"setuptools >=42" ,
"wheel",
"pybind11[global] >=2.6.0" ,
"cmake >=3.18" ,
"scikit -build",

]
build -backend = "setuptools.build_meta"

Now the Python module can be compiled and installed
by running the command pip install --user . in the root
directory of the project. Similarly Wheel archives can be
created for distribution.

Note that with modern Python packaging tools it is not
necessary to manually install pybind11 and scikit-build,
instead all build dependencies will be installed into an
isolated build environment by pip. The ‘[global]’ feature
of the pybind11 requirement is necessary to install the
include and cmake files correctly into the dedicated build
environment, it does not affect the Python installation or
environment in use and can thus be used safely.

Sebastian Kehl, Klaus Reuter

The Gitlab Package Registry

Ready-to-use applications or libraries are often published
via package portals. Nearly every programming ecosystem
has such a common and widely used web portal: for ex-
ample, the “Python Package Index (PyPi)” in the Python

world, “Maven Central” for Java. With the GitLab Pack-
age Registry, you can now publish application packages in
various formats directly via the MPCDF GitLab instance.

7https://pybind11.readthedocs.io/en/stable/installing.html
8https://pybind11.readthedocs.io/en/stable/compiling.html#compiling
9https://scikit-build.readthedocs.io/en/latest/usage.html#scikit-build-options

https://pybind11.readthedocs.io/en/stable/installing.html
https://pybind11.readthedocs.io/en/stable/compiling.html#compiling
https://scikit-build.readthedocs.io/en/latest/usage.html#scikit-build-options

Bits & Bytes No.208, December 2021 4

The GitLab Package Registry was introduced to the open-
source variant of GitLab in version 13.3. The Package
Registry can be used by any GitLab user to publish pack-
ages in various formats. In contrast to publicly available
package management portals, GitLab’s Package Registry
allows the user to keep a package completely private
or share it just with the other members of the current
repository or group. In addition, GitLab’s Continous In-
tegration capabilities are a convenient way of building and
testing a package automatically from source code stored
in a GitLab repository. The Package Registry should not
be confused with GitLab’s Container Registry, which can
be used to store and distribute Docker images, but not
application packages.

GitLab’s Package Registry supports currently a wide va-
riety of package formats, including Maven (for Java/JDK
based applications), npm (JavaScript) and PyPi (Python).
Further package formats are under development and some
are still in beta or alpha status, you can find the whole
list of supported package formats in the GitLab docu-
mentation10.

If you want to use the package registry in your GitLab
repository, you need to enable it under “Settings / General
/ Visibility, project features, permissions / Packages”:

After activation, you can access the package registry un-
der “Packages & Registries / Package Registry” in the
left menu.

The concrete procedure how to build and upload a pack-
age to the package registry depends on the format of the
package. The GitLab documentation11 has examples for

the most common package formats.

Example: Publishing Python packages

For building and publishing Python packages, you can
find a detailed tutorial in the MPCDF documentation:
Poetry and GitLab: Devops for Python developers12.
The tutorial makes use of Poetry, a packaging and de-
pendency management tool for Python. It was already
introduced in the previous edition of Bits&Bytes (Poetry:
Packaging and Dependency Management for Python13).
Testing, creation and uploading a PyPi package is done
via GitLab’s Continous Integration pipelines. After you
have successfully created and uploaded a PyPi Package
to the package registry, GitLab shows the package details
and how a user can download and install it into his local
Python environment:

Thomas Zastrow

Using Application Tokens instead of Passwords

The MPCDF offers several services which can be used
on a wide variety of (electronic) devices. For example,
the DataShare client can be installed on any smartphone,
tablet or laptop: the client makes uploading and down-
loading files from or to your device easy and convenient.
But using these kind of services on mobile devices has a
disadvantage: if you don’t want to type it every time, you
need to save your MPCDF password on the mobile device.
And even if the client stores the password encrypted, if
you loose your device or someone steals it, your password

may be in the wild. Another, but similar use case are
server based applications which need to access services like
DataShare or GitLab. If such an application should run
automatically and unsupervised, your personal MPCDF
password needs to be made available to it.

In order to avoid such security issues, services like
DataShare and GitLab are offering application specific
tokens (sometimes also called device tokens). These to-
kens are additional credentials which can be created by
the user himself – no help from a service administrator

10https://docs.gitlab.com/ee/user/packages/package_registry/index.html#supported-package-managers
11https://gitlab.mpcdf.mpg.de/help/user/packages/package_registry/index
12https://docs.mpcdf.mpg.de/doc/data/gitlab/devop-tutorial.html
13https://docs.mpcdf.mpg.de/bnb/207.html#poetry-packaging-and-dependency-management-for-python

https://docs.gitlab.com/ee/user/packages/package_registry/index.html#supported-package-managers
https://gitlab.mpcdf.mpg.de/help/user/packages/package_registry/index
https://docs.mpcdf.mpg.de/doc/data/gitlab/devop-tutorial.html
https://docs.mpcdf.mpg.de/bnb/207.html#poetry-packaging-and-dependency-management-for-python

Bits & Bytes No.208, December 2021 5

is necessary. Every device can get its own application
token: if your laptop got stolen, you just need to delete
its application tokens and go on with all other devices
and MPCDF services without any change.

Its strongly recommended that you create for ev-
ery device its own token!

To clarify: unless your hard disk is encrypted, a potential
thief still has access to the data locally stored on the
device. But he can’t access the application itself any-
more and update, change or delete data on the server.
The following sections describe the procedure of creating
application tokens in DataShare and Gitlab.

DataShare
After logging in to DataShare, go to your account settings
(top right of the screen). In the menu on the left, there is
an entry “Security”. On the bottom of this page, you can
find the option “App passwords / tokens”. Enter a name
for your device into the text box and click “Create new
app passcode”:

DataShare will now create a secure and safe token for you
- make sure that you copy and paste it! DataShare will
never be able to show you the token again. If you forgot
to save the token, you need to delete the entry for the
device and create a new app token. In any DataShare
client, you can now use the app token in combination
with your MPCDF user name to log in.

GitLab
In GitLab, you can find the application tokens under your
personal account, “Access tokens”:

In contrast to DataShare’s App Tokens, GitLab’s Access
Tokens have more functionality. Every token can have an
expiration date and one or more scopes. Via scopes, you
can set the token permissions to GitLab in a fine-granular
way.

Thomas Zastrow

Software Publishing

Software written in the context of research receives more
and more attention and is increasingly considered as gen-
uine research output that is publishable in its own right.
In this article we outline three ways of publishing software,
thereby making it referenceable and citable.

Do it yourself

In order to make software citable one needs at a mini-
mum an identifier such as a digital object identifier (DOI)
pointing to a place on the web from where the software
can be obtained. The latter can be any website of your
choosing or just a tagged revision of your code in a pub-
licly accessible version control system such as MPCDF’s
Gitlab. Being affiliated with the MPG you can request

a DOI from the Max Planck Digital Library (MPDL)
through their DOI service14. You fill in the form15 and
thereby specify the URL of your code plus some basic
metadata and that’s it.

Publish via a data archiving site

In many cases, however, you want a copy of your code to
be available from a 3rd-party data repository thereby del-
egating the responsibility for the long-term preservation
of your code. You also often want to publish multiple
versions of your code over time and you want to be able to
refer to individual revisions as well as your coding project
in general and expect that the metadata associated with
the identifiers reflect these relationships.

14https://doi.mpdl.mpg.de/
15https://doi.mpdl.mpg.de/request-doi

https://doi.mpdl.mpg.de/
https://doi.mpdl.mpg.de/request-doi

Bits & Bytes No.208, December 2021 6

An example of how this can be achieved is Github in con-
cert with Zenodo as explained on Github16. While there
is no such tight integration of Zenodo with Gitlab you can
achieve essentially the same by setting up your own code
publication pipeline using, for example, gitlab2zenodo17.

Software Heritage

A further option to archive and publish your code is via
Software Heritage18. Software Heritage maintains an in-
frastructure and services that will crawl your public code
repository (no matter whether it is based on git, subver-
sion, or any other common revision control system) on a
regular basis once you have prepared your code repository
and registered it as explained on their website19. They
will store a copy of your code, preserve it and assign a

unique intrinsic identifier which can then be used much
in the same way as a DOI.

Final remarks
No matter which way you publish your code it is a rec-
ommended best practice to also make the repository of
the (to-be) published code publicly accessible. Some of
the approaches mentioned above even require that. In all
cases you are expected to add metadata including author-
ship and usage rights (aka a license). And as a general
recommendation: a license should be chosen under all
circumstance and it is advisable to do this as early as
possible. If in doubt ask your peers or seek advice, e.g.,
on websites such as “Choose a license”20.

Raphael Ritz

News & Events
International HPC Summer School 2022
The international HPC summer school (IHPCSS) 2022
is planned as an in-person event from June 19th to June
24th in Athens, Greece. The series of these annual events
started 2010 in Sicily, Italy. Due to the Covid-19 pan-
demic, IHPCSS 2020 had to be cancelled and was carried
out as a virtual event in 2021, with mirrored sessions in
two different time zones to allow for convenient participa-
tion from any part of the world.

Now for 2022, the organizing partners XSEDE for the
US, PRACE for Europe, RIKEN CCS for Japan and the
SciNet HPC Consortium for Canada are inviting again
for applications for participation in Greece. In case pan-
demic conditions will not allow to ensure health-safety,
the organizers will switch to a virtual event. A final deci-
sion is expected by March 2022. Eligible candidates for
applications are graduate students and postdoctoral schol-
ars from institutions in Canada, Europe, Japan and the
United States. Interested students are invited to apply by
the end of January 2022. School fees, meals and housing
will be covered for all accepted applicants. 30 seats out
of the total number of 80 are reserved for applicants from
European institutions, and 50 seats are given to students
from the US, Canada and Japan. Traditionally, students
from Max Planck Institutes were participating. For fur-
ther information and application, please visit the website
of the summer school21.

Hermann Lederer

Advanced HPC workshop 2021
From November 22nd to 25th, the MPCDF hosted its
annual Advanced HPC Workshop for the MPG, as an
online event. Around 20 participants listened to 21 lec-
tures given by members of the applications group, the
AI group and by experts from Intel and Nvidia. The
topics included software carpentry, debugging, profiling
and optimizing codes for CPUs and GPUs. The last day
was dedicated to five code projects brought in by the
participants. Together with the code owners and the
experts from Intel and Nvidia, various tools were applied
to the codes and optimization strategies were developed.
Material of the MPCDF training programs, including
semi-annual introductory courses for new users, as well as
upcoming events can be found at the MPCDF webpage
under “Training & Education”22

Tilman Dannert

60 Years Max Planck Computing Centre
in Garching
In August 1961 the Institute for Plasmaphysics (IPP) in
Garching procured one of the most powerful computers
at that time – an IBM 7090 system with a performance
of 100 kFlop/s. The IPP had been founded in 1960 by
Werner Heisenberg and the Max Planck Society. To the
first users besides IPP belonged the Max Planck Institutes
for Physics and Astrophysics, for Biochemistry, and both
Munich Universities. The German Computing Centre in

16https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
17https://pypi.org/project/gitlab2zenodo/
18https://www.softwareheritage.org/
19https://www.softwareheritage.org/howto-archive-and-reference-your-code/
20https://choosealicense.com/
21https://ss22.ihpcss.org/
22https://www.mpcdf.mpg.de/services/training

https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://pypi.org/project/gitlab2zenodo/
https://www.softwareheritage.org/
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://choosealicense.com/
https://ss22.ihpcss.org/
https://www.mpcdf.mpg.de/services/training

Bits & Bytes No.208, December 2021 7

Darmstadt procured the same system und used the Garch-
ing computer in addition in phases of capacity shortage.
In 1969 an IBM 360/91 system was installed which also
belonged to the world’s top systems. In 1979 the first
vector computer worldwide for general basic science was
installed at the “Rechenzentrum Garching” (RZG). In the
following years and decades the RZG has evolved from a
local to a central facility of the Max Planck Society, and
in 2015 it was renamed to Max Planck Computing and
Data Facility (MPCDF), underlining that it also belongs
to the world’s largest academic data centers. More than
50 Max Planck Institutes make use of the services for
computing, storage, leading-edge HPC and AI application
development, and carry out data management projects
in collaboration with MPCDF. In addition, the MPCDF

is engaged in many national and international projects.

On October 14th, the 60-year anniversary was celebrated
with a scientific symposium23 in Garching. Vice pres-
ident of the Max Planck Society, Prof. Blaum, gave a
honorific speech, and renowned scientists from Plasma
und Astrophysics, Materials and Life Sciences, Quantum
Physics and Computer Science inspired the auditorium
with brilliant presentations on the state of the art of
computer-based basic science. The celebration act was
finished with a dinner in the rotating restaurant of the
Munich Olympic Tower, enabled by sponsorships of tech-
nology partner companies IBM, Lenovo and Nvidia.

Hermann Lederer

23https://www.mpcdf.mpg.de/anniversary-mpcdf.html

https://www.mpcdf.mpg.de/anniversary-mpcdf.html

	High-performance Computing
	Termination of general user operation for Draco login nodes
	Announcement of CUDA no-defaults on Cobra and Raven
	Usage of /tmp and /dev/shm on Cobra and Raven
	Eigensolver library ELPA
	Using Python-based hybrid-parallel codes on HPC systems

	Python bindings for C++ using pybind11 and scikit-build
	Interfacing Python/NumPy with C++ using pybind11
	Build with scikit-build

	The Gitlab Package Registry
	Example: Publishing Python packages

	Using Application Tokens instead of Passwords
	DataShare
	GitLab

	Software Publishing
	Do it yourself
	Publish via a data archiving site
	Software Heritage
	Final remarks

	News & Events
	International HPC Summer School 2022
	Advanced HPC workshop 2021
	60 Years Max Planck Computing Centre in Garching

