
Bits & Bytes
No.206, April 2021

Computer Bulletin of the Max Planck Computing and Data Facility (MPCDF)∗

https://docs.mpcdf.mpg.de/bnb

High-performance Computing

HPC System Raven: deployment of the
final system

The Raven-interim HPC system is currently being disman-
tled to make way for the final system. The new machine
will eventually comprise more than 1400 compute nodes
with the brand new Intel Xeon IceLake-SP processor (72
cores per node arranged in 2 “packages”/NUMA domains,
and 256 GB RAM per node). A subset of 64 nodes is
equipped with 512 GB RAM and 4 nodes with 2 TB RAM.
In addition, Raven will provide 192 GPU-accelerated com-
pute nodes, each with 4 Nvidia A100 GPUs (4 x 40 GB
HBM2 memory per node and Nvlink 3) connected to
the IceLake host CPUs with PCIe Gen 4. All nodes
are interconnected with a Mellanox HDR InfiniBand net-
work (100 Gbit/s) using a pruned fat-tree topology with
three non-blocking islands (2 CPU-only islands, 1 GPU
island). The GPU nodes are interconnected with up to
200 Gbit/s. The first half of the final system will become
operational at the beginning of May, the second half by
July, 2021. The new IceLake CPU on Raven (Intel Xeon
Platinum 8360Y1) is based on the familiar SkyLake core

architecture and the corresponding software stack, which
MPCDF users are already familiar with on the interim
system as well as on Cobra and several clusters. Notably,
the IceLake platform provides an increased memory band-
width (8 memory channels per package, compared to 6
channels on Skylake and its sibling CascadeLake). First
benchmarks have shown a STREAM Triad performance
of about 320 GB/s for a new Raven node (compared to
ca. 190 GB/s measured on Cobra). The IceLake CPU
is based on 10 nm technology and shows a significant
energy efficiency increase over the interim CPU. More
information about Raven can be found on the MPCDF
webpage2 and in the technical documentation3. Details
about the migration schedule and necessary user actions
will be announced to all HPC users of MPCDF facilities
in due time. Basically, users of the interim system will
only be required to recompile and relink their codes and
to adapt their Slurm submission scripts to match the new
node-level resources. As the new machine will use the
same file systems (/raven/u, /raven/ptmp, /raven/r) as
the interim system, migration of user data is not needed.

Hermann Lederer, Markus Rampp

Charliecloud and Singularity containers
supported on Cobra and Raven

The Singularity and Charliecloud container engines have
been recently deployed on the HPC clusters of the
MPCDF, offering additional opportunities to run sci-
entific applications at our computing centre. Through
containers, users have full control of the operating system
and on the software stack included in their environment,
so that applications, libraries and other dependencies can
be packaged and transferred together. Containers also
supply an operating system virtualization to run soft-
ware. This level of isolation, provided via cgroups and
namespaces of the Linux kernel, offers a logical mecha-
nism to abstract applications from the environment in

∗Editors: Dr. Renate Dohmen & Dr. Markus Rampp, MPCDF
1https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
2https://www.mpcdf.mpg.de/
3https://docs.mpcdf.mpg.de/doc/computing

https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
https://www.mpcdf.mpg.de/
https://docs.mpcdf.mpg.de/doc/computing


Bits & Bytes No.206, April 2021 2

which they run, promoting software portability between
different hosts.

Introducing just a small overhead with respect to bare
metal runs, applications in containers have increased re-
producibility, running identically regardless of where they
are deployed. This makes the use of containers partic-
ularly compelling when porting software with complex
dependencies or executing applications that require sys-
tem libraries different from the ones available on the host
system (or even a completely different operating system).
Containers also provide an easy way to access and run
pre-packaged applications that are available online, usu-
ally in the form of Docker containers that can be easily
converted into a Singularity or Charliecloud container
image.

Additional information on the use of Singularity and
Charliecloud at MPCDF can be found at the technical
documentation page of the MPCDF4 and in Bits&Bytes
No. 2055.

Michele Compostella

Control and verification of the CPU affin-
ity of processes and threads

Introduction

The correct mapping of processes and threads to proces-
sors is of paramount importance to get the best possible
performance from the HPC hardware. That mapping
is often called pinning and handled via CPU affinities.
Likewise, wrong pinning is very often the cause for infe-
rior performance, especially on systems one uses for the
first time. In the worst cases of incorrect pinning, some
processors would stay idle whereas other processors would
be overloaded with more tasks than they are actually able
to run simultaneously.

This article gives some information on how to check and
control the pinning on MPCDF systems. The pincheck
library and tool developed at MPCDF is introduced, be-
fore the article concludes with some technical background
for those readers who are interested.

Checking CPU affinities at runtime

In practice it is unfortunately cumbersome to learn about
the actual pinning of a job, as different batch systems,
MPI libraries, and OpenMP runtimes offer different ways
to turn on verbose output. For example, setting the
environment variable SLURM_CPU_BIND=verbose will in-
struct Slurm’s srun to print the process pinning it per-
forms. Similarly, setting I_MPI_DEBUG=4 will enable ver-

bose output from the Intel MPI library that includes
some pinning information. Third, for example, the vari-
able KMP_AFFINITY=verbose,compact will enable pin-
ning output for OpenMP codes compiled with the Intel
compilers, but please be aware that verbose cannot be
specified alone but always needs a type specifier (here
compact), otherwise no thread pinning would be applied.

As each of these outputs depends on individual software
they each need to be read and interpreted differently. To
reduce that complexity, MPCDF has developed a simple
library and tool that yields the pinning information of
codes at runtime in a unified and human-readable fashion.

The pincheck library and tool

To give developers and HPC users the possibility to easily
check the CPU affinities of the processes and threads of
their actual HPC jobs at runtime, MPCDF has developed
a lightweight C++ library and tool named pincheck6.
It collects and returns the processor affinities from all
MPI ranks in MPI_COMM_WORLD and from all the related
OpenMP threads. The affinities are obtained in a portable
way via system calls from the kernel, and no dependency
on specific compilers or runtimes exists. pincheck is
publicly available under a permissive MIT license.

For C++ codes, there is a header file (‘pincheck.hpp’)
available that can be easily included and used from exist-
ing codes. In this case, the C++ header already includes
the implementation, and no linking to a library is nec-
essary. For C/C++ and Fortran codes, we will provide
a library in combination with a C header file and a For-
tran module with the next release in the near future.
Alternatively, pincheck can be compiled and used as a
stand-alone program to check the CPU affinities one gets
based on certain batch scripts, environment variables,
MPI and OpenMP runtimes, etc.

Detailed information on how to use pincheck from an
existing code, and on how to compile and run it as a
stand-alone program is available in the git repository.

Processor and thread affinities on Slurm-based
systems at MPCDF

On the HPC systems and clusters at MPCDF, processes
are typically started via the srun launcher of Slurm.
Based on the resources requested for a batch job, Slurm
takes care of the CPU affinities of processes (which are
typically the MPI tasks) by applying useful defaults (i.e.,
the block distribution method).

For example, for a pure MPI job without threading, srun
will pin the tasks to individual cores such that consecutive

4https://docs.mpcdf.mpg.de/doc/computing/software/containers.html
5https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_205.pdf
6https://gitlab.mpcdf.mpg.de/khr/pincheck

https://docs.mpcdf.mpg.de/doc/computing/software/containers.html
https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_205.pdf
https://gitlab.mpcdf.mpg.de/khr/pincheck


Bits & Bytes No.206, April 2021 3

tasks share a socket. For hybrid (MPI/OpenMP) jobs
that use one MPI task per socket and (per task) a num-
ber of threads equal to the number of cores per socket,
srun will pin each MPI task to an individual socket. The
threads spawned by these processes inherit the affinity
mask, and the user has the option to further restrict the
pinning of these individual threads. For OpenMP codes,
this can be done by setting the environment variable
OMP_PLACES, for example to the string cores which will
pin each OpenMP thread to an individual core. Other
threading models (e.g. pthreads) typically offer certain
functions to achieve similar functionality.

The MPCDF documentation provides example submit
scripts that already include proper settings for the pinning
of MPI processes and OpenMP threads, see for example
the section on Slurm scripts for the Raven system7.

Technical background

The compute nodes of today’s HPC systems typically
contain two or more multi-core chips (sockets) where each
chip consists of multiple individual processors (cores) – a
design that implies a complex memory hierarchy: each
core has its private caches (typically L1 and L2), but
shares a last-level cache (typically L3) with a set of other
cores that are linked via a fast on-die bus. That bus
links to a memory controller to which DIMM modules
are connected. Each socket contains one or more such
sets of cores that are called NUMA (non-uniform memory
access) domains for the following reason: a core may logi-
cally access any memory attached to the compute node,
however, at different bandwidths and latencies depending
on which NUMA domain a particular part of the mem-
ory is physically attached to. Different NUMA domains
are connected via bus systems that are slower than the
intra-domain buses.

On a NUMA system it is therefore desirable that a core
accesses physical memory local to its NUMA domain.
Memory allocation and use is managed by the Linux op-
erating system in chunks (pages) that are typically 4 kB
in size. A first-touch policy applies, and, if possible, mem-
ory pages are placed closest to the core on which they
were first used. HPC developers must therefore write
their threaded programs in a NUMA-aware fashion to
optimize for caches and minimize inter-domain memory
accesses, and make sure that a process or thread stays
within the domain or on the particular core. For codes
that implement non-ideal memory access patterns (e.g.,

thread 0 touches all memory first, and then other threads
access that memory across NUMA domains), the auto-
matic NUMA balancing of the Linux OS may improve
the performance during the runtime.

By default, the scheduler of the Linux operating system
may move processes and threads (“tasks”) between the
available processors. In case such moves occur within a
NUMA domain, a task may suffer a temporary perfor-
mance penalty when it is moved to a core which initially
does not have relevant data cached in L1 or L2. In case a
task is moved from one NUMA domain to another, there
is in addition a more severe performance penalty caused
by non-local memory accesses, i.e., when the moved task
accesses memory pages physically located on another
NUMA domain from where these pages had been touched
first by the same task.

In most HPC scenarios it is advantageous to restrict that
moving activity in order to improve the overall temporal
and spatial locality of the caches and memory accesses.
To enable programmers and users to control the place-
ment of tasks relative to NUMA domains and cores, the
operating system supports setting so-called affinity masks
which are taken into account by the scheduler. Using such
masks, tasks can be “pinned” to sets of cores (e.g. NUMA
domains) or even to individual cores or hardware threads,
such that they stay there and are not moved. On a low
level these masks are actually bit masks, but fortunately
users can mostly work on a higher level by using e.g. the
variable OMP_PLACES=cores to instruct the OpenMP run-
time to pin individual threads to individual cores.

References

• The pincheck library on MPCDF GitLab8

• Slurm srun manpage9

• Intel MPI Library Developer Guide for Linux OS10

• Intel C++ Compiler Classic Developer Guide and
Reference, OpenMP Library Support11

• OpenMP Reference Guides12

• U. Drepper, What Every Programmer Should Know
About Memory, 200713

• C. Lameter, NUMA (Non-Uniform Memory Access):
An Overview, 201314

• Optimizing Applications for NUMA, Intel Corpora-
tion, 201115

• Linux’ automatic NUMA balancing16

Klaus Reuter
7https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html#slurm-example-batch-scripts
8https://gitlab.mpcdf.mpg.de/khr/pincheck
9https://slurm.schedmd.com/srun.html

10https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top.html
11https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/

optimization-and-programming-guide/openmp-support/openmp-library-support.html
12https://www.openmp.org/resources/refguides/
13https://www.akkadia.org/drepper/cpumemory.pdf
14https://doi.org/10.1145/2508834.2513149
15https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
16https://documentation.suse.com/sles/15-SP2/html/SLES-all/cha-tuning-numactl.html

https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html#slurm-example-batch-scripts
https://gitlab.mpcdf.mpg.de/khr/pincheck
https://slurm.schedmd.com/srun.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support.html
https://www.openmp.org/resources/refguides/
https://www.akkadia.org/drepper/cpumemory.pdf
https://doi.org/10.1145/2508834.2513149
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://documentation.suse.com/sles/15-SP2/html/SLES-all/cha-tuning-numactl.html


Bits & Bytes No.206, April 2021 4

High-performance data analytics and AI software stack at MPCDF

In the last years we have been observing an ever-growing
number of researchers who want to use institute clusters
and the HPC systems at MPCDF for data analytics and
especially for machine-learning and deep-learning projects.
This wish stems from the fact that the extremely power-
ful resources of HPC servers, especially if equipped with
high-end GPU devices, can substantially boost the perfor-
mance of data-analytics and AI workloads. Furthermore,
the possibility to use multi-node setups to parallelize the
workflows can reduce the time to solution by orders of
magnitude. However, for users it is a non-trivial task
to obtain a software stack that really does exploit the
hardware features of HPC systems (SIMD vectorisation,
Tensor cores of the GPUs, high-bandwidth fabrics, to
mention a few) and does run with a reasonable fraction
of the theoretical performance of the systems. Especially
the builds of frameworks which the users can obtain via
the usual distribution ways of the ML/DL community,
such as Python-based installation methods like “pip”,
usually do not run efficiently on HPC hardware.

In order to address the needs of its users for such work-
flows, MPCDF provides an HPC-optimized software stack
for data-analytics and AI applications. Among other
things, this software stack comprises

• basic ML and AI libraries such as Nvidia’s and
Intel’s DNN implementations
– Nvidia NCCL and cuDNN
– Intel MKL-DNN
– opencv

• popular frameworks
– Tensorflow
– Pytorch
– Mxnet
– scikit-learn

• parallelization frameworks
– Horovod (for Tensorflow, Pytorch and MxNet)
– Apache Spark

• tools for image and NLP processing

See the MPCDF documentation for a detailed list17 and

for some examples18 of how to use the software together
with Slurm.

Whenever possible, a CPU and a GPU variant of the
software is provided, which gives the user the freedom of
choice and allows a seamless migration between different
nodes and even clusters. As usual, the software is pro-
vided on MPCDF systems via the module environment.
Please note that MPCDF uses a hierachical software
stack (see Bits & Bytes No. 19819) and not all software
is always visible with the “module avail” command. We
recommend to use the “find-modules” command, which
will help users to find whether a software is available and
which modules have to be loaded before the respective
module will be visible.

Example:

user@cobra01:~> find-module tensorflow/gpu
tensorflow/gpu/1.14.0 (after loading

anaconda/3/2019.03)
tensorflow/gpu/2.1.0 (after loading

anaconda/3/2019.03)
tensorflow/gpu/2.1.0 (after loading

anaconda/3/2019.03)
tensorflow/gpu/2.2.0 (after loading

anaconda/3/2019.03)
tensorflow/gpu/2.2.0 (after loading

anaconda/3/2019.03)
tensorflow/gpu/2.3.0 (after loading

anaconda/3/2019.03)

After the desired modules have been loaded, the software
can be used in the usual way and for example can be used
with Jupyter Notebooks.

Further readings:

• Bits & Bytes No.20320 for Jupyter Notebooks as a
Service

• Bits & Bytes No.20021 for Data Analytics at
MPCDF

Andreas Marek

Decommissioning of AFS

After many years of acting as the central file system
in MPCDF, the time has come to say goodbye to the
Andrew File System (AFS). This does not mean that

AFS will disappear immediately, but as a first step it
is planned that home directories will no longer be set
up in AFS and not all login nodes of the Linux clusters

17https://docs.mpcdf.mpg.de/doc/computing/software/data-analytics/list-of-supported-software.html
18https://docs.mpcdf.mpg.de/doc/computing/software/data-analytics/machine-learning-software.html
19https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_198.pdf
20https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_203.pdf
21https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_200.pdf

https://docs.mpcdf.mpg.de/doc/computing/software/data-analytics/list-of-supported-software.html
https://docs.mpcdf.mpg.de/doc/computing/software/data-analytics/machine-learning-software.html
https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_198.pdf
https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_203.pdf
https://docs.mpcdf.mpg.de/bnb/pdf/bits_and_bytes_issue_200.pdf


Bits & Bytes No.206, April 2021 5

will provide access to AFS, as it is already the case on
gatezero. The lack of support for Windows forces the use
of alternatives. For most users the Sync&Share function-
ality provided by our datashare is a good solution. For
experiment data and software distribution other ways are
already established or still have to be determined. Thus,

we kindly ask all our users to no longer consider AFS
as the one and only filesystem for data exchange, but to
implement alternatives and not to store new data in AFS
home directories.

Andreas Schott

Relaunch of MPCDF website and new technical documentation platform

In March 2021, MPCDF relaunched its main website,
adopting the corporate design of the Max Planck Soci-
ety. The technical documentation for users of MPCDF
services, including a comprehensive and continuously ex-

tended FAQ, as well as the MPCDF computer bulletin
Bits&Bytes has been refurbished and is now available at
https://docs.mpcdf.mpg.de/

Markus Rampp on behalf of the MPCDF Webteam

Events
New online introductory course for new
users of MPCDF

The MPCDF has started offering a new online introduc-
tory course targeting new users. The first issue was held
on April 13th with over 100 registered users from more
than 30 Max Planck Institutes. In the future, it will be
repeated on a semi-annual schedule. The 2.5 hour online
course is given by application experts of MPCDF and
includes an interactive chat option and concluding Q&A
sessions. It provides a basic introduction to the essential
compute and data services available at MPCDF, and is
intended specifically for lowering the bar for their first-
time usage. This course is the basis for more advanced
courses such as the annual “Advanced HPC workshop” or-
ganised by MPCDF (next issue: autumn 2021, see below).
Major topics of the online introductory course include an
overview and practical hints for connecting to the HPC

compute and storage facilities and using them via the
Slurm batch system. The course material can be found
at the MPCDF webpage.

Advanced HPC workshop: save the date

Our annual Advanced High-performance Computing
Workshop is scheduled for November 22nd to 24th, 2021,
with an additional day of hands-on sessions for accepted
projects on the 25th. The main topics will be software
engineering, debugging and profiling for CPU and GPU.
The talks will be given by members of the application
group and by experts from Intel and Nvidia. Further
details and registration options will be announced in the
next issue of Bits & Bytes.

Klaus Reuter, Sebastian Ohlmann, Tilman Dannert

https://docs.mpcdf.mpg.de/

	High-performance Computing
	HPC System Raven: deployment of the final system
	Charliecloud and Singularity containers supported on Cobra and Raven
	Control and verification of the CPU affinity of processes and threads
	Introduction
	Checking CPU affinities at runtime
	The pincheck library and tool
	Processor and thread affinities on Slurm-based systems at MPCDF
	Technical background
	References


	High-performance data analytics and AI software stack at MPCDF
	Decommissioning of AFS
	Relaunch of MPCDF website and new technical documentation platform
	Events
	New online introductory course for new users of MPCDF
	Advanced HPC workshop: save the date


