
No. 205
December 2020 Bits & Bytes

Max Planck Computing & Data Facility (MPCDF)∗

Gießenbachstraße 2, D-85748 Garching bei München

High-performance Computing

Mykola Petrov, Renate Dohmen, Markus Rampp, Sebastian Ohlmann

HPC System Raven: interim system in full
production

The first CPU segment of the new Max Planck super-
computer Raven was taken into production operation in
September 2020. This interim system provides 516 com-
pute nodes based on the Intel Xeon CascadeLake-AP pro-
cessor (Xeon Platinum 9242) with 96 cores per node (4
"packages" with 24 cores each), and 384 GB of main
memory (24 memory channels) per node. The Raven
nodes are interconnected with a Mellanox HDR Infini-
Band network (100 Gbit/s) using a non-blocking fat-tree
topology over all nodes. The machine has been stable and
fully loaded from the very beginning and is routinely used
by scientists from more than thirty Max Planck Institutes.
The HPC cluster Raven can be accessed either from MPG
networks or via MPCDF gateway systems by using ssh
(users always have to provide their Kerberos password and
2FA token on the login nodes, SSH keys are not allowed):

• ssh raven.mpcdf.mpg.de

The login nodes (raven is an alias for raven11i or raven12i)
are mainly intended for editing, compiling and submitting
parallel programs. Running parallel programs interactively
in production mode on the login nodes is not allowed.
Jobs have to be submitted to the Slurm batch system.
Raven uses the Slurm workload manager. To run produc-
tion or test jobs, submit a job script to Slurm, which will
find and allocate the resources required for your job (e. g.
the compute nodes to run your job on). The number of
jobs each user can submit and run at the same time is
limited. By default, the job run limit is set to 8, the job
submit limit is 300. If batch jobs can’t run independently
from each other, one can use job steps or contact the
helpdesk on the MPCDF web page.
To test or debug codes interactively on the interactive
nodes raven-i.mpcdf.mpg.de (raven13i, raven14i), one
can use the command:

• srun -n 〈#cores〉 -p interactive -t 〈time〉 〈prog〉

Interactive usage is limited to only a small number of
cores, 60000 MB of memory and 2 hours runtime per job.
As on the HPC cluster Cobra, also on Raven a job submit
filter is used which automatically chooses the right par-
tition and job parameters from the resource specification
of a submitted batch job. If not all necessary resources
are specified or if there are inconsistencies, the job will be
rejected at submission with warning message.
Note that exactly the same version of the Intel MPI library
and runtime must be used during building and running an
MPI binary, otherwise errors will occur. Also there are no
preloaded modules. One has to specify the needed mod-
ules with explicit versions at login and also in the batch
submission script, e. g.:

• intel/19.1.3 impi/2019.9 mkl/2020.2

AFS as well as the remote file systems /draco/u and
/draco/ptmp are available only on the login nodes
raven.mpcdf.mpg.de and on the pool of interactive nodes
raven-i.mpcdf.mpg.de, and not on the Raven compute
nodes. Please be aware that automatic cleanup of
/raven/ptmp has been activated as of Dec 15, i. e. files
in /raven/ptmp that have been not accessed for more
than 12 weeks will be removed automatically. So, please
archive your data regularly, e. g. into the migrating file
system /r.
More information about Raven can be found on the Raven
home page.

HPC system Raven: notes on upcoming
GPU resource

As announced earlier this year, the current HPC interim
system Raven will be replaced by the final extension stage
during the first half of 2021. The new Raven machine
will provide roughly twice the total CPU application per-
formance delivered by the interim system, based on ca.
1350 dual-socket nodes with the new Intel Xeon IceLake-
SP CPU. In addition, Max Planck scientists will have a
very powerful GPU resource at their disposal: Raven will

∗Tel.: +49(89) 3299-01, e-mail: benutzerberatung@mpcdf.mpg.de, URL: https://www.mpcdf.mpg.de/
Editor: Renate Dohmen

https://helpdesk.mpcdf.mpg.de
https://www.mpcdf.mpg.de/services/computing/raven
https://www.mpcdf.mpg.de/services/computing/raven
mailto:benutzerberatung@mpcdf.mpg.de
https://www.mpcdf.mpg.de/

Bits & Bytes, No. 205, December 2020 2

comprise a total number of 768 Nvidia A100 GPUs. Each
GPU delivers a nominal peak performance of 9.7 TFlop/s
for 64-bit floating point (FP64) calculations, plus another
9.7 TFlop/s by the new FP64-capable tensor cores, and
provides 40 GB of high-bandwidth memory capable of sus-
taining a bandwidth of up to 1.6 TB/s. A single Raven
GPU node (with 2 IceLake host CPUs) hosts four A100
GPUs, with Nvlink (gen 3) connecting a GPU with any
of its three peers at a bandwidth of 100 GB/s (per di-
rection). PCI express (gen 4) links the GPU complex to
the host CPUs at a total bandwidth of 128 GB/s (per
direction).
The Raven GPU partition will support all relevant pro-
gramming tools, including the latest Nvidia SDK (e. g.
with CUDA and OpenACC-capable compilers, numerical
libraries, etc.), machine-learning tools and other GPU-
capable software.
Users are advised to begin with the porting as early as
possible in order to be able to take advantage of the sig-
nificant GPU computing capacity provided by the new
Raven machine early on. Although the A100 GPUs will
mark another step in the evolution in GPU hardware and
software technology, the preparation of applications and
in particular the porting of CPU-only codes can start right
away, e. g. by using the GPU partition of the MPCDF Co-
bra system with 128 Nvidia V100 GPUs and correspond-
ing software tools. The course material of the advanced
HPC workshop organized by the MPCDF in November
2020 may serve as a good starting point for exploring de-
tails of the A100 GPU hardware architecture and software
environment, GPU programming tools, as well as general
strategies and specific hints for porting HPC codes to
GPUs. Requests for application support for porting to
GPUs are welcome (contact: Markus Rampp).

Intel MKL: new module for using only parts
of its functionality

The Intel Math Kernel Library (MKL, https://
software.intel.com/en-us/mkl) is a comprehensive

numerical library that offers lots of functionality optimized
for x86 CPUs – BLAS, LAPACK, ScaLAPACK, FFT and
much more. However, its implementation of FFTW func-
tionality is incomplete which can lead to problems for
codes using both, a generic FFTW library (e. g. for fea-
tures not supported by MKL) and other parts of the MKL,
such as BLAS and LAPACK. To overcome this problem,
parts of the MKL functionality can be bundled in specific
shared objects using the builder tool, as described in Bits
and Bytes 203 (April 2020).
The MPCDF now offers these shared objects as modules,
specific for each compiler (‘mkl_parts‘) and compiler +
MPI combination (‘mkl_parts-mpi‘). Each module ex-
ports ‘$MKL_PARTS_HOME‘ as a path to the base
directory and offers several shared objects. The most
important ones are ‘libmkl_blas.so‘, ‘libmkl_lapack.so‘,
and ‘libmkl_cluster.so‘ for BLAS, LAPACK, and ScaLA-
PACK support. ScaLAPACK support is only available for
the ‘mkl_parts-mpi‘ modules. All shared objects have
been created correctly for the corresponding compiler and
MPI library such that the link line does not have to be
adapted (as is the case for the normal MKL link line).
These libraries support threading; in addition there are
also sequential variants with ‘_sequential‘ appended to
the name.
For linking these libraries, you can use the following link
lines:

BLAS: ‘-L$MKL_PARTS_HOME/lib -lmkl_blas
-Wl,-rpath=$MKL_PARTS_HOME/lib‘

LAPACK: ‘-L$MKL_PARTS_HOME/lib -lmkl_lapack
-Wl,-rpath=$MKL_PARTS_HOME/lib‘

ScaLAPACK: ‘-L$MKL_PARTS_HOME/lib
-lmkl_cluster
-Wl,-rpath=$MKL_PARTS_HOME/lib‘

If your code does not use OpenMP, you can also use the
sequential variants.
Using these libraries, one can use, both, FFTW and MKL,
without interference between those two libraries.

FAQ 4 2FA
Andreas Schott, Amazigh Zerzour

For accessing HPC systems and gateways, a stronger au-
thentication mechanism has been applied since Novem-
ber. The introduction of this so-called two-factor authen-
tication (2FA) has been successful and well accepted by
the users.
Their valuable feedback has even led to further optimiza-
tions of the method, and additional new features could
be implemented like the re-synchronization in case of a

clock-skew on the mobile phone. The possibility to gen-
erate TAN lists will become available soon.
An FAQ for 2FA has been set up for sharing solutions for
common problems. This document will be updated con-
tinuously to cover new questions and provide improved
solutions for known issues around 2FA at the MPCDF. It
can be found here: https://docs.mpcdf.mpg.de/faq/
2fa.html

https://www.mpcdf.mpg.de/about-mpcdf/news-events/hpc-workshop-2020
https://www.mpcdf.mpg.de/about-mpcdf/news-events/hpc-workshop-2020
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://www.mpcdf.mpg.de/about-mpcdf/publications/bits-n-bytes?BB-Issue=203
https://www.mpcdf.mpg.de/about-mpcdf/publications/bits-n-bytes?BB-Issue=203
https://docs.mpcdf.mpg.de/faq/2fa.html
https://docs.mpcdf.mpg.de/faq/2fa.html

Bits & Bytes, No. 205, December 2020 3

Charliecloud: containers for HPC
Michele Compostella, Andreas Marek

Introduction

In recent years, containers have become a popular tool
to package software and all its dependencies into an iso-
lated environment that is compatible and portable be-
tween different host systems. Among the large number
of container engines available nowadays, Charliecloud
(https://hpc.github.io/charliecloud/) provides a
user-defined software stack specifically developed for High
Performance Computing (HPC) centers, with a particular
attention towards security, minimal overhead and ease of
use.
Charliecloud runs on Linux systems and isolates the im-
age environment using Linux user namespaces. Contrary
to other container engines, it does not require privileged
operations or daemons at runtime, can easily access the
hardware available on the node (e. g. GPUs) and can be
configured to run on multiple computing nodes (for exam-
ple using the OpenMPI library). A Charliecloud container
image can be created from any Docker image locally avail-
able in the user’s workstation producing a tarball file that
can be transferred to the HPC cluster where it is intended
to run. See https://hpc.github.io/charliecloud/
command-usage.html for a list of commands. Note that
for the creation of a Docker image, root permissions are
required on the local machine.

Installation

Charliecloud has minimal software requirements:

• Recent Linux kernel (recommended version 4.4 or
higher)

• Bash (version 4.1 or higher)

• C compiler and standard library

• Docker (version 17.03 or higher)

and can be conveniently installed from one of the soft-
ware tarballs (available at https://github.com/hpc/
charliecloud/releases) using a standard ’configure-
make-make install’ procedure. Alternatively, Charliecloud
is also available for local installation from several package
managers.
Once the software has been installed, any Docker image
previously built on the local system can be converted into
a Charliecloud image using:

ch -builder2tar <image_name >:<tag > .

This command creates a .tar.gz file in the local folder
containing everything that is needed to run the container
on the HPC host.

In order to facilitate the access to Charliecloud for re-
searchers of the Max Planck Society, Charliecloud has
been deployed on the HPC clusters Draco, Cobra and
Talos via the module system and can be provided on in-
stitute’s clusters on request. The software on the host
can be loaded by simply using

module load charliecloud

Once the container image has been transferred to the
HPC cluster (e. g. using scp), the .tar.gz file can be
decompressed to a folder with the command

ch-tar2dir <charliecloud_image.tar.gz> \
<destination_folder >

and the container can be launched in a standard Slurm
script using ch-run, as shown in the following example:

srun ch-run <image_dir > -- echo \
"I’m in a container"

Multiple options are available, like, for example, the pos-
sibility to bind-mount local folders inside the container to
access or store software and data available on the host
system.

Performance

In order to assess the overhead introduced by the con-
tainer engine and to test the performance of Charliecloud
against software running on the ’bare metal’, we run the
Tensorflow 2 synthetic benchmark on 1 to 96 Tesla Volta
V100 GPUs on the Talos machine-learning cluster. We
focus on the following combination of software and li-
braries:

• gcc 8

• openmpi 4.0.5

• CUDA 10.1

• cudnn 7.6.5

• nccl 2.4.8

• TensorFlow 2.2.0

• Horovod 0.20.2

https://hpc.github.io/charliecloud/
https://hpc.github.io/charliecloud/command-usage.html
https://hpc.github.io/charliecloud/command-usage.html
https://github.com/hpc/charliecloud/releases
https://github.com/hpc/charliecloud/releases

Bits & Bytes, No. 205, December 2020 4

The resulting total number of images processed by the
benchmark for the Charliecloud and the bare metal runs
are shown in Fig. 1, together with the ideal scaling nor-
malized to a single GPU. The overhead introduced by the
container engine is minimal and the performance is almost
identical to the bare metal run.

Conclusion

Charliecloud has been deployed at the MPCDF and is
available via the module system, providing an additional
platform to run containers at our HPC facility. The soft-
ware is fully compatible with images created with Docker
and grants effortless access to accelerated hardware and
multi-node computation, while maintaining a strong fo-
cus on security and ease of use. Running Charliecloud
containers can be efficiently integrated into any Slurm
submission script for the HPC clusters available at the
MPCDF without requiring any special privilege on the
machine.
On their local workstation, users are entrusted with the
preparation of the Docker source image and the installa-

tion of software into the container.

Fig. 1: Tensorflow 2 synthetic benchmark comparison
between bare metal and Charliecloud runs. Performances
are measured as total number of images per second pro-
cessed by TensorFlow for an increasing number of GPUs.

repo2docker: Running Jupyter Notebooks via Docker

Thomas Zastrow

The tool repo2docker can be used to easily execute
Jupyter Notebooks on your local machine. The only local
requirement is an up-to-date and active Docker installa-
tion. The notebooks and any additional files need to be
stored in a publicly available Git repository, for example
the MPCDF GitLab instance.

repo2docker is a Python tool and can be installed via pip:

pip install repo2docker

After installation, a Git repository with Jupyter notebooks
can be transformed into an active Docker container:

repo2docker https :// gitlab.mpcdf.mpg.de/thomz/pandastutorial

The command will produce some output on the console. The last lines should be similar to this:

To access the notebook , open this file in a browser:
file :/// home/tom/.local/share/jupyter/runtime/nbserver -1-open.html

Or copy and paste one of these URLs:
http ://127.0.0.1:36223/? token=d20b552e296f655d68882ae

Opening up the address in a browser, you can see the
content of the cloned repository and execute any Jupyter
notebook it contains.
Behind the scenes: repo2docker clones the Git repository
and – if the file "requirements.txt" is present – the neces-
sary requirements. The base image used by repo2docker
contains an Anaconda installation based on Python 3.7.6
(current version of repo2docker is 0.11.0).

Warning: repo2docker is meant to run existing Jupyter
notebooks. Its intention is not on developing or editing
Jupyter notebooks. Any changes you do in the Jupyter
notebooks or in other files are not automatically commit-
ted and sent back to the external Git instance! If you
shut down the Docker container, your changes are gone.
To avoid data loss, you can login manually to the Docker
container while it is still running and execute Git com-
mands on the shell.

https://repo2docker.readthedocs.io/en/latest/

Bits & Bytes, No. 205, December 2020 5

News & Events
Raphael Ritz, Klaus Reuter, Thomas Zastrow

RDA-Deutschland Tagung 2021

Next year’s conference of the German-speaking part of
the Research Data Alliance will be an online event run-
ning from February 22 to 26, 2021. Topics covered will
range from new developments within the alliance to re-
lated activities such as the European Open Science Cloud
(EOSC) and the Nationale Forschungsdaten Infrastruktur
(NFDI). Participation is free of charge but registration
will be required to attend the sessions. Details will be
made available at the RDA-DE Website.

New website with Frequently Asked Ques-
tions

The MPCDF has launched a new website at https:
//docs.mpcdf.mpg.de/ to provide a collection of Fre-
quently Asked Questions. The platform enables both,
novice and expert users, to quickly find essential informa-
tion on MPCDF systems and services and will be contin-
uously updated and extended. Users are kindly asked to
check that FAQ before submitting a support ticket.

https://rd-alliance.org
https://ec.europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-policy/open-science/eosc_en
https://www.nfdi.de/
https://www.rda-deutschland.de/events/rda-de-2021
https://docs.mpcdf.mpg.de/
https://docs.mpcdf.mpg.de/

	High-performance Computing
	FAQ 4 2FA
	Charliecloud: containers for HPC
	repo2docker: Running Jupyter Notebooks via Docker
	News & Events

