
No. 202
December 2019 Bits & Bytes

Max Planck Computing & Data Facility (MPCDF)∗

Gießenbachstraße 2, D-85748 Garching bei München

High-performance Computing

Michele Compostella, Lorenz Hüdepohl, Sebastian Ohlmann, Markus Rampp, Klaus Reuter, Luka Stanisic, Ingeborg
Weidl

Software upgrades on Cobra and Draco

On the HPC cluster Cobra and on the Draco cluster, some
major software upgrades were done in October/November
2019. Along with the operating system upgrade a com-
pletely new set of software modules was deployed. With
this, we provide updated versions of the Intel Compiler,
MPI and MKL, which are also now set as the default:

Cobra: Intel Compiler 19.0.4, MPI 2019.4, MKL 2019.4

Draco: Intel Compiler 18.0.5, MPI 2018.4, MKL 2018.4

The deprecated compatibility modules intel/17.0 and in-
tel/18.0 were finally removed. The SLURM batch system
was upgraded from version 17.11 to 18.08 on both clus-
ters.

RVS on Cobra

The MPCDF has recently extended the web-based Re-
mote Visualization Service to Cobra. HPC users can now
select the "COBRA" machine in the submission page at
https://rvs.mpcdf.mpg.de and run their remote visu-
alization session on a dedicated visualization node of the
Cobra cluster.
Each remote visualization session has access to all visual-
ization software and data stored on the HPC systems. A
remote session on Cobra uses half of a visualization node
(i. e. a single RTX5000 GPU, 20 cores and 92 GB of main
memory) and can extend up to a maximum running time
of 24 hours. All steps required to initialize and submit a
remote visualization session on the Cobra cluster via the
web interface are described at the remote-visualization-

service webpage and are the same as needed for the Draco
cluster.
We remind users who require access to the OpenGL li-
braries for rendering purposes, that, in order to use the
OpenGL libraries in your remote visualization session, the
visualization command should be prefixed by "vglrun"
(e. g. "vglrun visit", "vglrun paraview", "vglrun python",
etc.). This will prevent error messages stating the GLX
extension is missing from the display of the host.

Module environment

Since the start of their usage on Cobra last year, hierar-
chical environment modules have also been installed on
Draco and several dedicated clusters. You can read more
about hierarchical environment modules on the modules
web page. However, the fact that not all modules are
directly visible upon login, created minor problems for a
few users. Therefore, the MPCDF decided to address this
issue with the following tool.
In case you know the name of the module you wish to
load, but you are not sure about the available versions or
what dependencies need to be loaded first, you can try to
use the ’find-module’ command. This tool searches for
the MODULENAME string through a list of all installed
modules

~> find -module MODULENAME

You can then choose the desired module version, use the
output of the command to determine the correct order to
load dependencies, and finally load the module itself, e. g.

~> find -module horovod
horovod/cpu /0.13.11 (after loading anaconda /3/2019.03 tensorflow/cpu /1.14.0)
horovod/cpu /0.15.2 (after loading anaconda /3/2019.03 tensorflow/cpu /1.14.0)
horovod/gpu /0.13.11 (after loading anaconda /3/2019.03 tensorflow/gpu /1.14.0)
horovod/gpu /0.15.2 (after loading anaconda /3/2019.03 tensorflow/gpu /1.14.0)
~> module load anaconda /3/2019.03 tensorflow/cpu /1.14.0 horovod/cpu /0.13.11

∗Tel.: +49(89) 3299-01, e-mail: benutzerberatung@mpcdf.mpg.de, URL: https://www.mpcdf.mpg.de/
Editor: Renate Dohmen

https://rvs.mpcdf.mpg.de
https://www.mpcdf.mpg.de/services/visualization/software
https://www.mpcdf.mpg.de/services/visualization/software
https://www.mpcdf.mpg.de/services/visualization/remote-visualization-service
https://www.mpcdf.mpg.de/services/visualization/remote-visualization-service
https://www.mpcdf.mpg.de/services/computing/software/modules
mailto:benutzerberatung@mpcdf.mpg.de
https://www.mpcdf.mpg.de/


Bits & Bytes, No. 202, December 2019 2

GPU profiling tools

Nvidia has recently introduced a new suite of tools
to profile applications running on Nvidia GPUs,
the Nsight tools (https://developer.nvidia.com/
tools-overview). These tools supersede nvprof which
is discontinued. The two most interesting tools for profil-
ing HPC applications are "Nsight systems" and "Nsight
compute", which are available as modules on our HPC
systems.
"Nsight systems" is a tool that helps in understanding
and optimizing the workflow of the full application. It of-
fers a timeline view that precisely shows kernel launches,
memory transfers, stack traces at certain points, and more
information. For the kernel launches, e. g., the duration
and launch parameters can be viewed; for the memory
transfers, the size, speed, direction, and duration of the
transfers are available. Moreover, "Nsight systems" sup-
ports NVTX (Nvidia tools extension), an API for defining
ranges and events in the application code which facilitates
associating the timeline to certain ranges in the source
code. This also allows one to easily see which parts of
the code run on the GPU and which parts are still exe-
cuted on the CPU.
An application can be profiled by using

~> module load cuda nsight_systems
~> nsys profile -t cuda ,nvtx srun ./ application

which generates a file named ’report1.qdrep’ that can be
opened in the GUI (to be started with ’nsight-sys’). It is
advised to profile only short runs (a few minutes maxi-
mum) to avoid generating trace files which are too large.
"Nsight compute" is a tool which allows much more de-
tailed profiling of kernels. It provides very detailed in-
formation on the kernels, such as the utilization of the
streaming multiprocessors, the memory bandwidth, and
overview of the memory hierarchy and caching, thread
scheduling, and much more.
An application can be profiled by using

~> module load cuda nsight_compute
~> nv-nsight -cu -cli --kernel -id \

:: kernel_name :2 -o output ./app

which will profile the second invocation of the kernel
with the name ’kernel_name’. This creates a file named
’output.nsight-cuprof-report’ that can be opened in the
GUI (to be started with ’nv-nsight-cu’). Because "Nsight
compute" runs each kernel to be profiled several times,
one should limit the profiling to a small number of repre-
sentative kernel launches.

Python on HPC systems

Klaus Reuter

Introduction

In addition to the traditional HPC applications compiled
from C/C++ and Fortran code we’re witnessing an in-
creasing workload of Python-based code running on the
HPC systems. Being an interpreted and dynamically-
typed language, plain Python is not a language suit-
able per se to achieve high performance. Nevertheless,
with the appropriate packages, tools, and techniques the
Python programming language can be used to perform
numerical computation in a very efficient manner, cover-
ing both aspects, the program’s efficiency and the pro-
grammer’s efficiency. The aim of this article is to provide
some advice and orientation to the reader in order to use
Python correctly on the HPC systems and to take first
steps towards basic Python code optimization.

Performance

The key to achieve good performance with Python is to
move expensive computation from the interpreted code
layer down to a compiled layer which may consist of com-

piled libraries, code written and compiled by the user, or
just-in-time compiled code. Below, three packages are
discussed for such use cases.

NumPy
NumPy is the Python module that provides arrays of na-
tive datatypes (float32, float64, int64, etc.) and math-
ematical operations and functions on them. Typically,
mathematical equations (in particular, vector and matrix
arithmetic) can be written with NumPy expressions in a
very readable and elegant way, which has several advan-
tages: NumPy expressions avoid explicit, slow loops in
Python. In addition, NumPy uses compiled code and op-
timized mathematical libraries internally, e. g. Intel MKL
on MPCDF systems, which enables vectorization and
other optimizations. Parts of these libraries use thread-
parallelization in a very efficient way by default, e. g.
to perform matrix multiplications. In summary, NumPy
provides the de-facto standard for numerical array-based
computations and serves as the basis for a multitude of
additional packages.

https://developer.nvidia.com/tools-overview
https://developer.nvidia.com/tools-overview
https://devblogs.nvidia.com/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/


Bits & Bytes, No. 202, December 2019 3

Cython
Cython is a Python language extension that makes it rel-
atively easy to create compiled Python modules written
in Cython, C or C++. It integrates well with NumPy ar-
rays and can be used to implement time-critical parts of
an algorithm. Moreover, Cython is very useful to create
interfaces to C or C++ code, such as legacy libraries or
native CUDA code. Technically, the Cython source code
is translated by the Cython compiler to intermediate C
code which is then compiled to machine code by a regu-
lar C compiler like GCC or ICC.

Numba
Numba is a just-in-time compiler based on the LLVM
framework. It compiles Python functions at runtime for
the datatypes these functions are being called with. More-
over, Numba implements a subset of NumPy’s functions,
i. e. it is able to compile NumPy expressions. Functions
are declared via a simple decorator syntax to be suitable
for jit-compilation, hence, Numba is minimally intrusive.

Parallelization

While Python does implement threads as part of the stan-
dard library, these cannot be used to accelerate computa-
tion on more than one core in parallel because the stan-
dard cPython implementation serializes the execution of
Python byte code. A global interpreter lock is used to en-
sure that only one instruction can be executed at a time
from all threads belonging to a Python process. Never-
theless, Python is suitable for parallel computation. In
the following, two important packages for intra-node and
inter-node parallelism are addressed.

multiprocessing
The multiprocessing package is part of the Python stan-
dard library. It implements building blocks such as pools
of workers and communication queues that can be used to
parallelize data-parallel workloads. Technically, multipro-
cessing forks subprocesses from the main Python process
that can run in parallel on multiple cores of a shared-
memory machine. Note that some overhead is associated
with the inter-process communication. It is, however,
possible to access shared memory from several processes
simultaneously. A typical use case are large NumPy ar-
rays.

mpi4py
Access to the Message Passing Interface (MPI) is avail-
able via the module mpi4py. It enables parallel compu-
tation on distributed-memory computers where the pro-
cesses communicate via messages. In particular, the
mpi4py package supports the communication of NumPy
arrays without additional overhead. On MPCDF systems,
the environment module mpi4py provides an optimized
build based on the default Intel MPI library.

I/O

NumPy implements efficient binary I/O for array data that
is useful, e. g., for temporary files. A better choice with re-
spect to portability and long-term compatibility are HDF5
files. HDF5 is accessible via the h5py Python package
and offers an easy-to-use dictionary-style interface. For
parallel codes, a special build of h5py with support for
MPI-parallel I/O is provided via the environment module
h5py-mpi.

The Python software ecosystem

In addition to the packages discussed above, there is a
plethora of well-established packages for scientific compu-
tation and data science available, covering, e. g., numer-
ical libraries (SciPy), visualization (matplotlib, seaborn),
data analysis (pandas), and machine learning (Tensor-
Flow, pytorch), to name only a few.

Software installation

Often, users need to install special Python packages
for their scientific domain. In most cases, the easi-
est and quickest way is to create an installation local
to the user’s home directory. After loading the Ana-
conda environment module, the command "pip install
- -user PACKAGE_NAME" would download and install
a package from the Python package index (PyPI), or
similarly, the command "python setup.py install - -user"
would install a package from an unpacked source tarball.
In both cases, the resulting installation is located below
"~/.local" where Python will find it by default.

Summary

The software recommended in this article is avail-
able via the Anaconda Python Distribution (environ-
ment module "anaconda/3") on MPCDF systems. Note
that for some packages (mpi4py, h5py-mpi), the hi-
erarchical environment modules matter, i. e., it is
necessary to load a compiler (gcc, intel) and an
MPI module (impi) in addition to Anaconda in or-
der to get access to these depending environment
modules. Some examples of SLURM job scripts are
available at https://www.mpcdf.mpg.de/services/
computing/software/languages-1/python.
The application group at the MPCDF has developed an
in-depth course on "Python for HPC" which covers all the
topics touched in this article in more detail on two days.
It is taught one to two times per year and announced via
the MPCDF web page.
Finally, it should be pointed out that Python 2 reaches
its official end-of-life on January 1, 2020. Consequently,
new Python modules and updates to existing ones will
not take Python 2 compatibility into account in the fu-
ture. Users who are still running legacy code are strongly
encouraged to migrate to Python 3.

https://www.mpcdf.mpg.de/services/computing/software/languages-1/python
https://www.mpcdf.mpg.de/services/computing/software/languages-1/python


Bits & Bytes, No. 202, December 2019 4

Cluster hosting

Hermann Lederer

The MPCDF traditionally hosts central Max Planck su-
percomputers and data infrastructures. In 2015, when the
RZG was renamed to MPCDF, midrange-cluster hosting
became a further official mission. Until 2000, only a few
systems from Garching institutes (IPP, MPA and MPE)
had been hosted at the RZG. In 2002, when the new ma-
chine room became available, cluster hosting at the RZG
also started for external institutes, the first ones being the
Fritz Haber Institute in Berlin, and the MPI for Polymer
Research in Mainz, together with other Garching MPIs.
Since 2007, when the old machine room was refurbished,
more and more institutes started to host their servers at

the RZG and to replace them on-site after typically about
five years of operation. In the meantime, more than 25
Max Planck institutes have their compute or data systems
hosted at the MPCDF, with a total power consumption
of around 1.5 MW. Key advantages of hosting clusters
at the MPCDF include: the availability of groundwater
cooling, the proximity to the Max Planck supercomput-
ers for pre and postprocessing, the mass storage system
for long-term archival, high-bandwidth (WAN) network
connections, and the availability of a comprehensive, uni-
fied and maintained software stack as well as application
support.

The MPCDF SelfService: Guest-User and
Self-Management for GitLab and DataShare

Amazigh Zerzour, Thomas Zastrow, John Alan Kennedy

A new self and guest-administration platform

The newly introduced SelfService platform lets MPCDF
users easily manage their subscriptions to MPCDF ser-
vices and allows them to invite external guests to those
services (please note: you need a regular MPCDF ac-
count before you can login to the MPCDF SelfService).
The SelfService thereby replaces the previous subscrip-
tion service for administrating guest accounts (subscrip-
tions.rzg.mpg.de). A redesign of the previous system was
undertaken to give users more control over their accounts.
In particular, the goals were to enable users to subscribe
to specific MPCDF services and to introduce a more fine-
grained privilege management for guest accounts.
The new platform extends the functionality of the sub-
scription service by multiple aspects:

• Users can grant themselves access to the MPCDF
services GitLab and DataShare (more to come).

• Access for guests can be granted for each service
individually.

• Access for guests can be withdrawn entirely or per
service.

The SelfService thereby makes the services offered by the
MPCDF more accessible to all MPCDF users and gives
users the chance to specify exactly which services they
would like to use. Additionally, guest-account manage-
ment is now more flexible since access can be granted and
revoked for each service individually. The platform can be
found at https://selfservice.mpcdf.mpg.de.

Self-administration for MPCDF users

The services that users can subscribe themselves to cur-
rently include GitLab (code versioning) and DataShare
(online data storage). After logging in with the creden-
tials of their "Primary MPCDF account/Erstkennung"
users can use the navigation bar at the top of the page
to navigate to My Account 〉 Services (Fig. 1) and see
which services they are currently using and which they
can additionally subscribe to. Note: It may take up to
20 minutes until users can log in to a service after sub-
scribing to it on the SelfService. At the bottom of the
page users can see which service attributes are assigned to
them. Attributes are service-specific settings such as the
storage quota for DataShare which can only be altered
by the MPCDF support. It is not possible to unsubscribe
oneself from a service since this would generally lead to
orphaned user data. If users would like to stop using a
service they need to contact MPCDF support to decide
what should happen with their data.

Figure 1: Managing subscribed services

https://selfservice.mpcdf.mpg.de
https://gitlab.mpcdf.mpg.de
https://datashare.mpcdf.mpg.de


Bits & Bytes, No. 202, December 2019 5

Additionally, users can view their data such as telephone
or room number via My Account 〉 My Data. Currently
the data shown here is read-only.

Guest management

Users can invite persons who have no MPG account to
collaborate with them via one or more of the services pro-
vided by the MPCDF. However, please note, that people
who already have an MPG account cannot be invited as
guests and should apply for their own MPCDF account in-
stead. A new guest may be invited via Guest users 〉 New
invitation (Fig. 2). Invitors can provide the full name and
e-mail address of the guest. They may also write a short
message to the guest and specify why the guest was in-
vited (such as a project name or contract id). The guest
then has seven days to use the link in the invitation e-mail
to register at the SelfService. The inviter is informed by
e-mail as soon as this happens. Guest accounts are valid
for two years by default. Guests who were granted access
to DataShare have no quota of their own; they use the
storage quota of the users which share links with them.
Please remember, that when you share a link with a guest,
they will use your data quota.

Figure 2: The invitation form

Existing guests can be managed under Guest users 〉 List
of guests (Fig. 3). Next to each guest there is an edit but-
ton that allows the user to grant and withdraw access to
specific services, deactivate the account completely, pro-
long it, or send out a password reset mail (Fig. 4). These
functionalities get restricted when the inviter deactivates
the account and fully disabled if an administrator deacti-
vates it. The inviter may choose to reactivate the guest

account and change access rights on a per-service basis at
any point provided the account has not been deactivated
by an administrator. Again, changed access rights may
take up to 20 minutes to manifest.

Figure 3: Overview of invited guests

Figure 4: Editing a guest

Self-administration for guest users

Guests are currently not able to log in to the SelfService
platform. However, they may use it to accept invitations
or request a password reset e-mail. When accepting an
invitation, guests have the chance to choose a username
and are asked to set a password for their new account. For
the safety of the users the MPCDF password policy disal-
lows the reuse of a password that is in use with any other
third-party service to prevent password-reuse attacks.

Further information and future plans

The SelfService help page contains more detailed infor-
mation as well as FAQs and troubleshooting tips. The
SelfService is envisioned to provide more options for self-
administration as well as a login for guests in the future.
The list of available services for self-subscription is also
expected to grow.

https://selfservice.mpcdf.mpg.de/index.php?r=site%2Fhelp


Bits & Bytes, No. 202, December 2019 6

Archival
Hermann Lederer

Data management with the HSM system
HPSS

The Hierarchical Storage Management (HSM) system
HPSS, introduced at the RZG in 2011, proves to
be increasingly essential for managing the archival re-
quirements of many Max Planck Institutes from all
three scientific sections. The largest needs, how-
ever, in meantime arise from Life Sciences. Since
late 2018, when the amount of data stored in HPSS
at the MPCDF surpassed the 100 PB threshold, we
have faced an increase of more than 36 PB. In
the list of publicly disclosed HPSS deployments, as
published in http://www.hpss-collaboration.org/
customersT.shtml, the MPCDF continues to belong to
the top 10 scientific data centers worldwide and remains
on rank 1 within Germany.

Safety of Archival Data

In 2006, the president of the Max Planck Society, Prof.
Gruß, requested the RZG to ensure that important data
can be stored safely for at least 50 years. From the very
beginning of mass storage at the RZG with an automated
tape library in 1980, a CDC8500 with 2000 8-MB car-
tridges, the challenge we had to master was to provide
bit preservation across multiple generations of archiving
technologies, w.r.t both hardware and software. The stan-
dard solution has been to have two tape copies for archival
data (for backup, the standard is only one tape copy).
The MPCDF has started to further improve safety of par-
ticularly precious archival data which fulfill the following
criteria: MPCDF is the master site, and there are no of-
ficially maintained data copies at other sites, and in the
unlikely case of loss, the data would be unrecoverable
or it would require immense efforts to recover the data.
For such data, a third tape copy, using different software
technology, is now hosted in Berlin on request. This pro-
cedure takes into account the updated recommendation
for geo-redundancy which requires a distance larger than
200 km.

News & Events
Tilman Dannert, Hermann Lederer

HPC Workshop November 2019

For the second time an Advanced HPC Workshop has
been held at the MPCDF from November 11 to 13, 2019.
Over 40 participants from 18 Max Planck Institutes from
diverse research directions attended the first 1.5 days. Ex-
perts from the application group and from Intel gave 15
lectures about different topics ranging from software en-
gineering over (parallel) debugging and profiling up to
overview talks about new hardware and GPU program-
ming models. The final day was dedicated to "hands-on"
sessions on a set of user codes, which were analyzed with
the support of the experts from Intel and the application
group of the MPCDF.

HPC Summer School 2020

The 11th International HPC Summer School 2020 is go-
ing to take place from July 12 to 17 in Toronto, Canada,
hosted by the University of Toronto. Graduate students
and postdoctoral scholars from institutions in Canada, Eu-
rope, Japan and the United States are invited to apply.
The summer school is organized by XSEDE for the US,
PRACE for Europe, R-CCS for Japan and the SciNet HPC
Consortium for Canada. Interested students are invited to
apply by January 27, 2020. School fees, meals and hous-
ing will be covered for all accepted applicants, as well
as intercontinental flight costs. Further information and
application: http://www.ihpcss.org.

http://www.hpss-collaboration.org/customersT.shtml
http://www.hpss-collaboration.org/customersT.shtml
http://www.ihpcss.org

	High-performance Computing
	Python on HPC systems
	Cluster hosting
	The MPCDF SelfService: Guest-User and Self-Management for GitLab and DataShare
	Archival
	News & Events

