
No. 199
August 2018 Bits & Bytes

Max Planck Computing & Data Facility (MPCDF)∗

Gießenbachstraße 2, D-85748 Garching bei München

High-performance Computing

Ingeborg Weidl, Hermann Lederer

HPC Clusters Cobra and Hydra

The new HPC system Cobra, based on Intel Skylake pro-
cessors, was put into production in April 2018. In May,
the cluster was extended by another 636 ’Skylake’ nodes
in a fifth island with full non-blocking fat-tree OmniPath
interconnect. In total, there are now 127,520 cores with a
total main memory of close to 0.5 PB and a peak perfor-
mance of close to 10 PetaFlop/s. Six login nodes provide
access to the system. The next step in this system’s ex-

pansion will be the addition of nodes with NVIDIA Volta
GPUs. These nodes are expected to be available before
the end of the year and will act as a replacement for the
5 years old Kepler K20X GPUs in Hydra.
For the Hydra system a large part of the Intel IvyBridge
based nodes have been de-commissioned during the last
months in order to make room for Cobra. The reduced
Hydra system now consists of 338 nodes with 676 K20X
GPUs, and 272 general compute nodes. Queue waiting
times on Hydra have therefore increased noticeably.

The evolution of the Anonymous FTP server and data
sharing at MPCDF

John Alan Kennedy

After many years in service the anonymous FTP server
at the MPCDF (ftp.rzg.mpg.de) has been upgraded to a
modern host system. Although the server remains avail-
able, there have been some slight modifications to the
system and users are also advised to use the MPCDF
Datashare service in future to solve data sharing use cases.
The major modifications to the ftp service are:

1. The FTP server is now restricted to pure anony-
mous mode.

2. Users with MPCDF accounts are now required to
use the more secure SFTP protocol.

This means that anonymous users can still access the FTP
server to anonymously upload/download data, but users
who wish to access with an MPCDF account, and thus
control which data may be shared, are now required to
use the more secure SFTP protocol.
The FTP server will remain in service and provides a tried
and tested means of sharing data with anonymous exter-
nal users. However, as we mentioned earlier, the new
Datashare service can also be used to cover the core use
cases, and we will highlight these below.

The two major use cases are:

1. Sharing data with Anonymous external users (out-
going data)

2. Data upload from Anonymous external users (in-
coming data)

The MPCDF FTP server solves these use cases by allow-
ing anonymous access to the server for data upload, but
dictating that data for download must be managed by
MPCDF users, which now use the SFTP protocol.
These use cases can equally be covered by the MPCDF
Datashare service which now allows password protected
links to be created for anonymous upload (dropbox like
function) and sharing. The benefit of using the Datashare
system is that it allows more granularity w.r.t. data man-
agement. A user can create different links for different
datasets and share them with different external collabo-
rators.
For more information see the following links for Anony-
mous FTP and Datashare

∗Tel.: +49(89) 3299-01, e-mail: benutzerberatung@mpcdf.mpg.de, URL: https://www.mpcdf.mpg.de/
Editor: Renate Dohmen

https://internal.mpcdf.mpg.de/services/data/data-transfer/ftp
https://internal.mpcdf.mpg.de/services/data/data-transfer/ftp
https://internal.mpcdf.mpg.de/services/data/share
mailto:benutzerberatung@mpcdf.mpg.de
https://www.mpcdf.mpg.de/

Bits & Bytes, No. 199, August 2018 2

Lightweight performance measurement tools

Lorenz Hüdepohl, Sebastian Ohlmann

In the following we shall describe two lightweight profiling
tools, likwid (developed by RRZE) and ftimings (devel-
oped by the MPCDF) which facilitate performance anal-
ysis and guide optimization of application codes on the
level of compute node(s). Likwid is a mature and well-
known tool suite which has been widely used in the com-
munity over many years. With the recent introduction of
a new backend for accessing hardware counters, likwid has
become more generally usable and can now be supported
on MPCDF HPC systems. Our in-house developed ftim-
ings library takes a slightly more minimalistic approach.
In fact, it is very similar in spirit to the venerable per-
flib developed by the RZG/MPCDF in that it provides
a simple API allowing the user to instrument sections of
interest in the code and to measure timings and related
information for these sections.

1) The likwid tool suite

Likwid is a lightweight, open-source performance mon-
itoring and benchmarking suite, developed for the x86
architecture at the regional computing center Erlan-
gen (RRZE). The source code is available at https:
//github.com/RRZE-HPC/likwid. Its focus lies in mea-
suring performance on single nodes; not on communica-
tion patterns in distributed-memory systems (i. e., not on
MPI performance). Important use cases for likwid are
getting information on the memory hierarchy of a node,
measuring hardware performance counters, and pinning
processes and threads to certain cores.
Information on the memory hierarchy of a node, i. e.,
on its topology, can be obtained with

likwid -topology -g

which gives information on the CPU type, the number of
sockets, cores, and threads, as well as sizes and groups
of different cache levels and NUMA domains, including a
graphical view. This information can then be used, e. g.,
to design the layout of arrays or loops for optimal cache
usage.
Hardware performance counters can be measured us-
ing the likwid-perfctr tool. For example, the memory
bandwidth that an application utilizes can be obtained
with

likwid -perfctr -g MEM ./a.out

which will print out a summary of measured counters and
derived quantities at the end of the run. Different groups
of counters are predefined to measure, e. g., the number of

floating-point operations (FLOPS_DP/FLOPS_SP for
double/single precision), the memory bandwidth (MEM),
the arithmetic or operational intensity (number of float-
ing point operations per transferred byte of memory;
MEM_DP/MEM_SP for double/single precision), trans-
fer rates between different cache levels (CACHES), the
branch prediction miss rate (BRANCH), or the load-to-
store ratio (DATA). All available counter groups can be
displayed with likwid-perfctr -a. The information
obtained by measuring these characteristics can be used
to analyze the performance of the application and find
potential bottlenecks. Moreover, these global measure-
ments can be performed without adapting the code. Mea-
surements of the hardware counters can be restricted
to certain code regions by instrumenting the code us-
ing the marker API, available for C and Fortran 90. The
marker API is activated by passing the option -m to
likwid-perfctr (for more information, see the online
documentation).
Pinning of threads to specific cores can be useful for
multi-threaded applications to avoid context switches and
to have defined behaviour with respect to the NUMA lay-
out of the node. This is offered by likwid-pin as a unified
interface to applications using pthreads or OpenMP with
gcc or intel compilers. Pinning can be done on several lev-
els of the NUMA hierarchy (likwid-pin -p gives more
information) and to physical and/or logical cores (when
using Hyperthreading). To pin all threads of an OpenMP-
parallel application to the 40 physical cores of a Broadwell
node on Draco, one can use

likwid -pin -c N:0-39 ./a.out

Pinning can be combined with measuring performance
counters by specifying the corresponding expression (e. g.,
N:0-39) as an argument with -C (capital letter) to
likwid-perfctr. The likwid tool suite also provides
likwid-mpirun as a tool to use pinning and measure
performance counters for MPI and hybrid MPI/OpenMP
applications. It is considered experimental according to
the documentation, but has been tested for various com-
binations of schedulers, compilers, and MPI libraries (e. g.,
SLURM + Intel compiler + Intel MPI). To measure float-
ing point operations per second for a pure MPI applica-
tion, one could use

likwid -mpirun -np 80 -g FLOPS_DP ./a.out

to run on two Draco Broadwell nodes (this replaces the
srun call). This will print out information on the per-
formance counters for each core and a summary for the
total run. If the application is instrumented using the

https://github.com/RRZE-HPC/likwid
https://github.com/RRZE-HPC/likwid

Bits & Bytes, No. 199, August 2018 3

marker API to track code regions, the switch -m is recog-
nized here as well. More information on options for each
of the commands and more functionality of likwid can
be found online at https://github.com/RRZE-HPC/
likwid/wiki.

Usage on MPCDF systems
The likwid tool suite is available on the MPCDF HPC
systems Draco and Cobra and can be accessed as a
module (on Cobra only after a compiler module has
been loaded). It is compiled to use the Linux tool
’perf’ as a backend for measuring performance coun-
ters. After issuing module load likwid, the binaries
are available in $LIKWID_HOME/bin, the library files for
the marker API in $LIKWID_HOME/lib, the include files
in $LIKWID_HOME/include. To avoid interference with
other users, measurements should always be done on full
nodes. If you want to measure the number of float-
ing point operations per second, you should use nodes
with the Broadwell architecture or newer (e. g., Cobra or
Broadwell partition on Draco), because these counters
are not reliable on earlier Intel architectures (Sandybridge,
Ivybridge, Haswell).

2) ftimings, a simple Fortran library for
time measurement and profiling

Very often applications need some simple and cheap
timing information, both for internal purposes, such as
cleanly shutting down (checkpointing) before batch sys-
tem time limits are encountered, or for profiling the var-
ious parts of the code. For this, we developed a simple
library at the MPCDF called ftimings, that is primarily

aimed at Fortran-based codes. It is similar in spirit to the
venerable perflib in that it uses explicit calls placed by
the user in the code to instrument sections of interest.
It always measures wall-clock time, and calls from within
OpenMP parallel regions are only considered for the first
thread.
The ftimings library provides a simple object-oriented
Fortran interface, and can also be used from a C code
or from C code sections of a Fortran program. A specific
feature of ftimings is that timing sections can be nested
and will be presented consistently as a tree in the output.
Example. A very minimal mock-up of a code could be
instrumented like this:

program phi
use ftimings
type(timer_t) :: timer
[...]

call timer%enable ()

call timer%start(’init ’)
call some_init ()
call timer%stop(’init ’)

call timer%start(’main -loop ’)
do i = 1, 4

call timer%start(’a’)
call a()
call timer%stop(’a’)

call timer%start(’b’)
call b()
call timer%stop(’b’)

call c()
end do
call timer%stop(’main -loop ’)

call timer%print()
end program

The call timer%print() statement could produce an
output such as this:

loh@cobra01 :~> ./a.out
/= Group [s] fraction
| ============ ============
|_ [Root] (running) 18.002003 1.000

|_ (own) 0.000250 0.000
|_ init 2.000139 0.111
|_ main -loop 16.001608 0.889

|_ (own) 4.000575 0.250
|_ a (4x) 4.000535 0.250
|_ b (4x) 8.000498 0.500

As you can see, the information is stored in a tree, and
nested timer%start() calls appear as child nodes of
their encompassing sections. This, of course, necessi-
tates that the user does not close an outer section before
all started inner sections have been closed. The user is
responsible for ensuring that this is the case. However,
the library detects such misuse and disables the affected
timer_t object after printing a warning message.
Every node is labeled with the argument given to the
%start()/%stop() subroutines and by default lists two
values, its time duration and the fraction this particular
duration is relative to its parent node. It is also possible

to record various other resource data, such as allocated
memory or FLOP counts (on hardware that supports it).
The time values for multiple identical %start()/%stop()
pairs in the same encompassing section are accumulated
together and increase a counter value, visible in paren-
thesis after the node names a and b. The mean time
duration for a single call of the b subroutine would thus
be about 2 seconds.
The measurements are constructed such that all child
nodes on the same level exactly add up to the value
of their parent node, sections of the code that are not
enclosed by timing sections are put into a special node

https://github.com/RRZE-HPC/likwid/wiki
https://github.com/RRZE-HPC/likwid/wiki

Bits & Bytes, No. 199, August 2018 4

(own). Here, this represents the loop overhead and the
time spent in the c subroutine.
Run-time querying. In addition to this profiling func-
tionality, the library also allows access these values from
within the program while it is running. This can, for ex-
ample, be used to schedule the stop of the program after a
certain duration, or to abort it should a certain operation
take an abnormal amount of time.
For this, the procedure %since() is available, that re-
turns the amount of seconds since an unclosed %start()
call has been made with the supplied label. Example:

print *, ’It is ’, timer%since(’main -loop ’), &
’ seconds ago since start(’’main -loop ’’) ’ &
’has been called ’

There is also the %get() method to query already closed
sections:

call timer%start(’init ’)
call some_init ()
call timer%stop(’init ’)

print *, ’some_init () took ’, &
timer%get(’init ’), ’ seconds ’

Hierarchical queries. To query child nodes, additional
arguments with their labels should be supplied. For ex-
ample, to get the time spent in all those b calls, use

print *, ’All the b() calls took ’, &
timer%get(’main -loop ’, ’b’), ’ seconds ’

(The same scheme can be used for the %since()method)
Additionally, there are functions to sum up all the time
spent in any descendant nodes with a given name.
Suppose you enclosed all communication parts of your
code with %start/%stop(’comm’) calls, you can query
the total amount of time spent in those with the
%in_entries() method:

print *, ’Spent ’, &
timer%in_entries(’comm ’), &
’ seconds in communication ’

In order to consider only those sections below a certain
parent, additional arguments should be provided before
the label name to be queried,

print *, ’Spent ’, &
timer%in_entries(’main -loop ’, ’b’, ’comm ’), &
’ seconds in comm sections in b()’

Sorting. By default, arguments are inserted into the tree
in the order in which their %start() calls were done. To
get a better overview in very large trees covering a whole
simulation code, it is often better to sort the resulting
tree levels. For this, there is the %sort() method that
sorts the internal tree structure. Note that the original
order is then lost.
Thresholds. Additionally, sometimes one is not overly
concerned with many sections that cover only a short
time duration. It is possible to exclude those by pass-
ing the optional argument threshold to the %print()
method of timer_t. Then, all child sections that took
less than that threshold are subsumed under a single entry
node (below threshold) and are not shown individu-
ally. That way the printed tree is still consistent in that
all child nodes’ values sum up to their parent’s total, but
unimportant nodes can be hidden.
Cost. Every first call to timer%start() at a certain point
in the tree allocates a small amount of memory. If the
timer is no longer needed, all that memory can be freed
again with the %free() method.
Additionally, timer instances start and can be
%disabled(), in which case almost all operations re-
turn immediately without (as much of) the overhead that
would be necessary when doing the actual time measure-
ments. That said, the actual overhead when the timer is
enabled should be in the order of thousands of cycles per
start%()/%stop() pair.
Due to this small overhead it is of course never advised
to instrument completely down to the innermost loops.
On a per-function level, though, the overhead should be
small enough in most cases – otherwise your functions
are problematically small anyway. It is of course possible
to create multiple timer_t objects, that instrument the
code in different granularity, and which do not need to be
enabled all the time.
Availability. ftimings is open-source and is already
available as a module on many of the clusters as well
as on the Draco and Cobra installations at the MPCDF.
It provides a pkg-config file with the usual –libs and
–cflags arguments, as well as the Fortran specific flags
in –variables=fcflags. Example usage:

#> module load gcc/8 ftimings
#> LDFLAGS ="$(pkg -config ftimings -1-gcc -8 --libs) -Wl ,-rpath=$FTIMINGS_HOME/lib"
#> FCFLAGS=$(pkg -config ftimings -1-gcc -8 --variable=fcflags)
#> gfortran $FCFLAGS foo.F90 -o foo $LDFLAGS

Note the peculiar name, ftimings-1-gcc-8, of the
pkg-config file. This signifies the API version (1) of
ftimings as well as the Fortran compiler used to build it
– since Fortran modules are compiler dependent this is

sadly necessary.
For codes that are already equipped with perflib in-
strumentation there is also a wrapper library that pro-
vides a compatible API of most of perflib’s inter-

Bits & Bytes, No. 199, August 2018 5

face. There are additional pkg-config files (e. g.
ftimings_perflib-1-gcc-8) that provide the neces-
sary linker arguments to link with that shim layer
(Note that the focus of perflib is slightly different
from ftimings’, perflib has less overhead and strives
to exclude that overhead from the resulting numbers.

ftimings’ focus is to provide hierarchical/nested time
information).
The source code and documentation, also for the C API,
can be found in the libraries repository, publicly available
at our gitlab instance.

GitLab: Online Editing of Source Code

Thomas Zastrow

In addition to Git’s basic versioning functionality, GitLab
(https://gitlab.mpcdf.mpg.de) offers several other
features which support collaboration and project manage-
ment. The integrated WebIDE makes it now easy and
comfortable to edit source code directly in the GitLab
web application – without the need of checking out a Git
project to your local computer. Once you have navigated
to a source document, GitLab offers you to open it in the
WebIDE (top right of the screen):

The WebIDE offers syntax highlighting and bracket
matching for many modern programming languages like
Java, C, PHP or Python. With the tab on the left, the
user can navigate through the files of the current Git
repository and open more than one file at the same time
for editing. It is also possible to create new files and add
them to the repository:

The WebIDE keeps track of all changes to existing or new
files and offers to add and commit them (bottom left of
the screen):

The WebIDE has a tight integration into GitLab’s ver-
sioning functionality. For example, it can compare the
current version of a file with its previous commit:

GitLab’s WebIDE is far away from the functionality of
well-known desktop based IDEs like Netbeans or Eclipse.
There is no code completion, no refactoring and no inte-
gration of build systems. However, it allows the developer
to do a quick change of their source code, without losing
the functionality of a Git-based versioning and GitLab’s
collaboration tools. In combination with the continuous
integration function of GitLab, it is also possible to imple-
ment a whole workflow without leaving the GitLab web
interface.

https://gitlab.mpcdf.mpg.de/mpcdf/ftimings/
https://gitlab.mpcdf.mpg.de

	High-performance Computing
	The evolution of the Anonymous FTP server and data sharing at MPCDF
	Lightweight performance measurement tools
	GitLab: Online Editing of Source Code

