
No. 191
December 2015 Bits & Bytes

Max Planck Computing & Data Facility (MPCDF)∗

Gießenbachstraße 2, D-85748 Garching bei München

High-Performance Computing

Ingeborg Weidl, Florian Merz (Lenovo), Markus Rampp

Formatted I/O in Fortran

In general, using formatted I/O for large amounts of data
(e. g. big arrays) should be avoided, because the files get
bigger and it is much slower compared to unformatted
I/O. In certain situations, however (e. g. when running a
legacy code or for debugging), it can still be necessary
or useful to write formatted output. The purpose of this
article is to discuss I/O performance tuning possibilities
for those situations.
In Fortran, every new line that is written to a file cor-
responds to a record that has to be written to the file
system. If a lot of (short) lines are created, e. g. by writ-
ing every element of a large array to a file in an implicit
loop, this large number of small write requests can be-
come a significant performance bottleneck. To speed up
the I/O, the number of write requests has to be reduced.
Apart from changing the output pattern (e. g. by reducing
the number of lines that have to be written by putting
more data in every line), this can be achieved without
source code modifications by enabling I/O buffering in
the Fortran runtime environment. I/O buffering aggre-
gates many small records before an actual write request
to the file system is issued, so that the effective number
of write requests to the file system is reduced. Note that
this means that most recent data will not appear in the
file system immediately, but all data is guaranteed to be
flushed into the file when the file is closed. The default
behaviour of the Intel Fortran compiler is to do no buffer-
ing. We have recently introduced an environment variable
in the Intel Compiler modules on hydra that switches on
I/O buffering for Fortran (FORT_BUFFERED=yes). For
further Intel runtime options for Fortran I/O, see the re-
spective FORT_ environment variables on the Intel web
page. I/O buffering is switched on by default for gfortran.

Buffer Aliasing in MPI calls

According to the message-passing interface (MPI) stan-
dard arguments of MPI functions that are modified
(tagged OUT or INOUT in terms of the MPI stan-

dard) must not be ’aliased’ with any other argument,
i. e. the memory locations of the corresponding buffers
may not overlap. The MPI-2 standard introduced the tag
MPI_INPLACE, which allows usage of the same buffer
(variable) for input and output buffers (e. g.). Neverthe-
less, quite a number of applications apparently still use
buffer aliasing without specifying MPI_INPLACE which
used to be silently tolerated by many MPI implementa-
tions. However, modern MPI implementations such as
the version 1.4 of the IBM Parallel Environment which
was introduced as the default on the HPC system hydra
earlier this year, or recent releases of Intel MPI, finally en-
force standard conformance in this respect, which leads to
crashing of non-conforming codes. Code developers are
strongly advised to adhere to the MPI standard and to
correct non-conforming MPI calls. As a fallback for such
applications which cannot be modified, version 1.3 of the
parallel environment (non-default module mpi.ibm/1.3) is
still available on hydra.

How to archive/backup data on the HPC
cluster hydra

On hydra, there are two global, parallel file systems of type
GPFS (/u and /ptmp) and a migrating GPFS file system
/r which should be used to archive or backup your data in
/u and /ptmp. As there is no regular system backup of /u
and no system backup of /ptmp, the users are responsible
to do their own backups.
The migrating file system /r (a symbolic link to /ghi/r)
is available only on the login nodes hydra.rzg.mpg.de and
on the interactive nodes hydra-i.rzg.mpg.de. Each user
has a subdirectory /r/〈initial〉/〈userid〉 to store his/her
data. For efficiency, smaller files should be packed to tar,
cpio or zip files (with a size of at least 1 GByte up to
500 GBytes) before archiving them in /r. When the file
system /r gets full above a certain value, files will be au-
tomatically transferred from disk to tape, beginning with
the largest files which have been unused the longest time.
There is a limit of 120,000 files in /r per user.

∗Tel.: +49(89) 3299-01, e-mail: benutzerberatung@mpcdf.mpg.de, URL: http://www.mpcdf.mpg.de/
Editor: Renate Dohmen

https://software.intel.com/de-de/node/524845
https://software.intel.com/de-de/node/524845
http://www.mpi-forum.org/docs
http://www.mpi-forum.org/docs
mailto:benutzerberatung@mpcdf.mpg.de
http://www.mpcdf.mpg.de/

Bits & Bytes, No. 191, December 2015 2

If you access a file which has been migrated to tape, the
file will automatically be transferred back from tape to
disk. This of course implies a delay. You can manually
force the recall of a migrated file by using any command
which opens the file. You can recall in advance all files
needed by some job with a command like

file myfiles /*

You can see which files are resident on disk and which ones
have been migrated to tape with the command ghi_ls
(located in /usr/local/bin), optionally with the option -l.
Here is a sample output:

hydra01% ghi_ls -l
G -rw-r--r-- 1 ifw rzs 22 Nov 21 15:12 a1
H -rw------- 1 ifw rzs 138958551040 Sep 18 22:22 abc.tar
H -rw-r--r-- 1 ifw rzs 1073741312 May 06 2009 core
G -rw-r--r-- 1 ifw rzs 0 Jun 20 2008 dsmerror.log
B -rw-r--r-- 1 ifw rzs 1079040000 Aug 03 2010 dummyz3

The first column states where the file resides: a ’G’ means
the file is resident on disk; an ’H’ means the file has been
transferred to the underlying HPSS tape archiving system;
a ’B’ means premigrated to tape (the file has already been
copied to HPSS, but is still present on disk, however may
be removed by the system if disk space is needed).
Please note: If you want to ’tar’ files that are already

located in /r, please carefully check in the contents of
the resulting TAR file whether all migrated files were cor-
rectly retrieved and included into the TAR file. Don’t use
’gzip’ or ’compress’ on files that are already located in
/r. It’s not necessary, because all files are automatically
compressed by hardware as soon as they are written to
tape.

See also: http://www.mpcdf.mpg.de/services/computing/hydra/filesystems

The MPCDF GitLab Service
Thomas Zastrow, Florian Kaiser

Figure 1: GitLab navigation bar

Since November this year the MPCDF offers a new Git-
based version control service on the basis of the Open-
Source software GitLab. GitLab offers a convenient web
interface for managing and controlling software projects,
similar to the popular GitHub service. However, the ser-
vice is hosted entirely on-premise at the MPCDF, with

the user in full control over projects and other informa-
tion. Existing Git-based projects can be imported into
GitLab.
An ’Activity tracker’ summarizes recent activities on a
project. Enhanced visualization and management func-
tions are supporting common workflows of a version con-
trol system. Additionally, GitLab offers a built-in wiki as
well as an issue tracker. An extensive user and group man-
agement enables team work and collaboration. Figure 1
shows the navigation bar of GitLab and the functionality
it offers.
The GitLab service can be used by any MPCDF user.
At the moment, however, only user accounts that have
MPCDF’s DataShare service enabled are allowed to log
into GitLab. This is a temporary workaround until we
have reworked our subscription service. Allowing external
guest users is not yet enabled, but is planned for the near
future. A Continuous Integration System will be added
to the GitLab installation soon. For further information,
please contact us (support@mpcdf.de).

Quick Links

• MPCDF’s GitLab service

• GitLab documentation

• MPCDF’s subscription service (subscribe to the
DataShare service for the time being to enable Git-
Lab)

https://gitlab.rzg.mpg.de/
https://gitlab.rzg.mpg.de/help
https://subscriptions.rzg.mpg.de/

Bits & Bytes, No. 191, December 2015 3

Upgrade of the Visualization Infrastructure

Klaus Reuter, Ingeborg Weidl

Starting from January 2016, interactive GPU-accelerated
visualization services will be offered on a subset of the hy-
dra supercomputer. In particular, a number of the hydra
GPU nodes were upgraded with additional main mem-
ory and with local hard disks for temporary user data.
Compared to the visualization cluster VIZ, users will ex-
perience increased performance due to more recent GPUs
(2 x NVIDIA Tesla K20X per node, 6 GB GPU RAM
each) and more powerful host systems (2 x 10-core In-
tel IvyBridge CPUs per node, up to 256 GB RAM). In
addition, the integration of the visualization services into
the supercomputer enables innovative approaches such as
in-situ visualization.
Interactive visualization sessions are to be requested using
a special batch queue on the system, similar to compute
jobs. A sample submit script will be made availabe on

the MPCDF web page. As soon as the requested visu-
alization session starts on hydra, the user will receive a
notification E-mail with instructions. Similar to VIZ, VNC
is the method of choice to connect remotely to the VNC
desktop running on hydra. Popular visualization software
will be provided. The reservation calendar used on VIZ
won’t be available on hydra.
Finally, after more than five years of successful operation,
the visualization cluster VIZ is scheduled to be decom-
missioned by the end of January 2016. Users are encour-
aged to migrate their data from viz:/u and viz:/vizdata
to the corresponding hydra file systems. The data gate-
way to IFERC – ’viztrans’ – will remain in operation with
a slightly modified configuration, though. Details will be
announced separately.

New Centre of Excellence: NOMAD Laboratory

Raphael Ritz, Hermann Lederer

On October 27th and 28th, 2015, the kick-off meeting of
the new European Centre of Excellence called NOMAD
Laboratory took place at the Harnack-Haus of the Max
Planck Society in Berlin-Dahlem.

Lead by Matthias Scheffler, director at the Fritz-Haber
Institute of the Max Planck Society, eight top-level re-
search facilities (including two Max Planck Institutes) and
four high-performance computing centres (amoung them
MPCDF and LRZ) have joined forces to accelerate the
search for new materials suitable for new technological
developments and materials science research in general.
The Centre of Excellence will develop methods to sys-
tematically and efficiently screen and analyze the huge
amounts of data that have been generated in materials

science – and that continue to grow with increasing rate
currently. This will make it possible to discover currently
unknown materials with interesting properties as well as
new phenomena in known materials. Results of these ac-
tivities will be fed into a virtual encyclopedia of materials
which is one of the ultimate goals of the Centre of Excel-
lence.
MPCDF’s main contributions will be in the areas of visu-
alization and high-performance computing infrastructure.
Here, the MPCDF can build on long-standing expertise in
these fields in general as well as on its experience gained
in supporting the NoMaD Repository over the past year.
This repository provides the data on which the NOMAD
Laboratory will operate. The MPCDF will also continue
to support the further development of this repository in
close contact and coordination with the new Centre of
Excellence.

Quick Links:

• NOMAD Laboratory website

• NoMaD Repository website

• MPG news feature announcing the Centre of Excel-
lence

• Interview with Matthias Scheffler, PI of the Centre
of Excellence (in German)

http://nomad-coe.eu/
http://nomad-repository.eu/
https://www.mpg.de/9725650/nomad-european-center-of-excellence
https://www.mpg.de/9725650/nomad-european-center-of-excellence
https://www.mpg.de/9722929/interview-scheffler-nomad-exzellenzzentrum
https://www.mpg.de/9722929/interview-scheffler-nomad-exzellenzzentrum

Bits & Bytes, No. 191, December 2015 4

Mailing problems with new DSL

Andreas Schott

Several DSL providers are delivering pre-configured
routers or are updating the configuration of these routers
when a contract has changed, e. g. from DSL to VDSL.
Some of these configuration parameters can cause trou-
ble within the MPG setup by for example blocking E-
mail traffic to the MPG E-mail servers. If your mail is
(suddenly) no longer working at home, please check the
configuration of your DSL modem. There may be en-

tries to setup a firewall blocking access to E-mail related
ports for encrypted pop, imap or smtp (995, 993, 465) or
even to use a list of trusted E-mail servers, on which the
MPG servers are not listed. In case you encounter such
problems and the above hints are not sufficient, please
contact our helpdesk indicating that there was a contract
or hardware exchange of your DSL.

Debugging Memory Corruption with the Address Sanitizer
Library

Lorenz Hüdepohl

Since GCC 4.8 programs can be instrumented to use the
’AddressSanitizer’, a fast memory-corruption detector. It
detects out-of-bound accesses to heap, stack and global
memory regions as well as invalid usage of any memory
that has already been freed again.
This is especially valuable for C programs, where the lan-
guage does not offer built-in support to check for out-
of-bounds accesses. Consider for example the following
invalid C program ’test.c’:

#include <stdio.h>
int main(int argc , char *argv[argc]) {

int i;
char a[12];
for (i = 0; i <= 12; i++) {

a[i] = 0;
fprintf(stderr , ’%d ’, i);

}
return 0;

}

The error here is that the condition i 〈= 12 in the for-loop
permits i to be equal to 12 which results in a write ac-
cess to the non-existing array element a[12] (the correct
condition would of course be i 〈 12).

The invalid write now sets the byte behind the last ele-
ment of a to zero. Whether this memory location is write-
able or not – the latter would be good, as this then would
trigger a segfault, an unambiguous sign that something
is wrong with your code – or whatever other meaning the
program assigns to this memory location is architecture
and compiler specific.
In this example it can even happen (amd64/gcc/no opti-
mization) that &a[12] is exactly the address of the loop
variable i. The surprising result is that now the loop
never terminates, as the statement a[12]= 0 in the last
iteration zeros i again:

$> gcc -g test.c -o normal
$> ./ normal
0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 ...
[... loops forever ...]

This is exactly the kind of error that can be detected
with the address sanitizer. Compile the program with
-fsanitize=address to see its effect:

$> gcc -g -fsanitize=address test.c -o asan
$> ./asan
0 1 2 3 4 5 6 7 8 9 10 11 ===
==28624== ERROR: AddressSanitizer: stack -buffer -overflow on address 0x7ffee084820c at

pc 0x000000400ac9 bp 0x7ffee08481b0 sp 0x7ffee08481a8
WRITE of size 1 at 0x7ffee084820c thread T0

#0 0x400ac8 in main test.c:6
#1 0x7f3eef42a78f in __libc_start_main (/lib64/libc.so.6+0 x2078f)
#2 0x400928 in _start (asan+0 x400928)

Address 0x7ffee084820c is located in stack of thread T0 at offset 44 in frame
#0 0x400a05 in main test.c:2

This frame has 1 object(s):
[32, 44) ’a’ <== Memory access at offset 44 overflows this variable

HINT: this may be a false positive if your program uses some custom stack unwind
mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)

SUMMARY: AddressSanitizer: stack -buffer -overflow test.c:6 main
Shadow bytes around the buggy address:
[... further output omitted for brevity ...]

Bits & Bytes, No. 191, December 2015 5

ASan has detected the invalid access, warns the user and
aborts the program. Note that in this particular example,
other memory debugging tools might not report any er-
rors, as only the program’s own memory (a[] and i) is
accessed.
Valgrind, for example, relies on interpreting (+ JIT com-
piling) the program’s machine code, it can thus not dis-
tinguish the invalid write to i via a[12]= 0 from a valid
i = 0. For this, instrumentation of the program during
compilation is necessary.
Valgrind in particular is valuable for other tasks, though,
for example to detect the use of uninitialized memory and
memory leaks, profiling and pthread synchronization er-
rors. Also, at least a subset of out-of-bounds accesses
(to invalid or non-writeable memory regions) are also de-
tected. For more information about Valgrind, see also the
previous article ’Code validation tools’ from Bits & Bytes

issue 183.
Note that there are also some out-of-bound conditions
that cannot be detected by ASan. The tool works by in-
serting guard bytes around any distinct memory buffer.
This cannot be done in-between adjacent structure mem-
bers, in order to preserve binary compatibility of the struc-
ture’s memory layout. An out-of-bound access within a
struct is therefore not detected!
In Fortran, the language has some built-in notion of the
length of arrays which enables comparatively robust out-
of-bounds checking via special compiler switches (e. g.
-fcheck=bounds for GCC). However, if you by mistake
explicitly lie about the bounds to the compiler, also this
cannot save you. Consider the following Fortran example,
where in subroutine testsub both bounds of array a are
explicitly specified:

module m1
implicit none
contains

subroutine testsub(a, n)
integer :: n, i
integer :: a(1:n)
do i = 1, n

a(i) = 0
end do

end subroutine
end module
program test

use m1
use iso_fortran_env , only : error_unit
implicit none
integer :: b(4), a(4)

a(:) = 1.0
b(:) = 2.0

call testsub(b, 6)

write(error_unit ,*) a
write(error_unit ,*) b

end program

The example is invalid, as in the main program we lie to
testsub about the bounds of a, resulting again in out-
of-bounds writes. Note that this is also not caught by the
built-in array bounds checks offered by the compiler:

$> gfortran -g -fcheck=all test.F90 -o normal
$> ./ normal

0 0 1 1
0 0 0 0

From the output of the program it can be seen that the
array b now has been erroneously written to by testsub,
as b was placed adjacent in memory to a in the particular
compiler/architecture combination used here.
With the address sanitizer these kinds of errors can be
detected:

$> gfortran -g -fcheck=all -fsanitize=address test.F90 -o asan
$> ./asan
===
==30474== ERROR: AddressSanitizer: stack -buffer -overflow on address 0x7fff0ab65b60 at

pc 0x000000400dd8 bp 0x7fff0ab65890 sp 0x7fff0ab65888
WRITE of size 4 at 0x7fff0ab65b60 thread T0

#0 0x400dd7 in __m1_MOD_testsub test.F90:9
#1 0x400fd5 in test test.F90:24
#2 0x4011d0 in main test.F90:16
#3 0x7fc4e0eee78f in __libc_start_main (/lib64/libc.so.6+0 x2078f)
#4 0x400ba8 in _start (asan+0 x400ba8)

Address 0x7fff0ab65b60 is located in stack of thread T0 at offset 112 in frame
#0 0x400e3a in test test.F90:15

This frame has 2 object(s):
[32, 48) ’a’
[96, 112) ’b’ <== Memory access at offset 112 overflows this variable

http://www.rzg.mpg.de/about-mpcdf/publications/bits-n-bytes?BB-View=183&BB-Document=13
http://www.rzg.mpg.de/about-mpcdf/publications/bits-n-bytes?BB-View=183&BB-Document=13

Bits & Bytes, No. 191, December 2015 6

HINT: this may be a false positive if your program uses some custom stack unwind
mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)

SUMMARY: AddressSanitizer: stack -buffer -overflow test.F90:9 __m1_MOD_testsub
Shadow bytes around the buggy address:
[... further output omitted for brevity ...]

Again, Valgrind would not be able to detect a fault, as only valid memory locations were accessed:

$> valgrind ./ normal
==30480== Memcheck , a memory error detector
==30480== Copyright (C) 2002 -2013 , and GNU GPL ’d, by Julian Seward et al.
==30480== Using Valgrind -3.10.1 and LibVEX; rerun with -h for copyright info
==30480== Command: ./ normal
==30480==

0 0 1 1
0 0 0 0

==30480==
==30480== HEAP SUMMARY:
==30480== in use at exit: 0 bytes in 0 blocks
==30480== total heap usage: 26 allocs , 26 frees , 29 ,017 bytes allocated
==30480==
==30480== All heap blocks were freed -- no leaks are possible
==30480==
==30480== For counts of detected and suppressed errors , rerun with: -v
==30480== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

We suggest never to use the idiom where both array
bounds are specified as dummy-arguments to a subrou-
tine (specifying only the lower bound is fine). Instead, use
so-called assumed-shape arrays which are available since
Fortran 90:

subroutine testsub(a)
integer :: a(:)
integer :: i
do i = 1, size(a)

a(i) = ...

Or with a lower-bound possibly different from 1 by:

subroutine testsub(a, lb)
integer :: i, lb
integer :: a(lb:)
...
do i = lb, ubound(a, dim=1)

a(i) = ...

	High-Performance Computing
	The MPCDF GitLab Service
	Upgrade of the Visualization Infrastructure
	New Centre of Excellence: NOMAD Laboratory
	Mailing problems with new DSL
	Debugging Memory Corruption with the Address Sanitizer Library

