
No. 184
July 2011 Bits & Bytes

Garching Computing Center of the Max Planck Society and the Institute for Plasma Physics∗

Boltzmannstraÿe 2, D-85748 Garching bei München

Next Generation Supercomputer

Hermann Lederer

The current Max Planck supercomputers operated at
RZG are the IBM BlueGene/P and Power6 systems which
were installed in September 2007, and in May 2008, re-
spectively. In the 2012/2013 time frame these systems
shall be replaced by a more powerful next-generation sys-
tem in the Peta�op range. The plans for such a replace-
ment, supported by 25 Max Planck Institutes, have been

approved by the Max Planck advisory council BAR ('Be-
ratender Ausschuss für Rechenanlagen') in March 2011.
In April, a European procurement has been started by the
administrative headquarters of the Max Planck Society.
The procurement is ongoing, results are expected still in
2011.

Software updates on HPC systems

Francois Thomas (IBM), Renate Dohmen, Markus Rampp

Updated LAPACK and SCALAPACK li-
braries

Earlier this year we have updated our software installa-
tions for the Power6 and BlueGene/P platforms to pro-
vide the latest versions of the numerical libraries LA-
PACK (available versions: 3.3, 3.2, 3.1) and SCALA-
PACK (available versions: 1.8). Both libraries are avail-
able in di�erent versions as modules (check the output of
command module avail). This installation supersedes
the existing libraries installed under /usr/local/lib,
which are outdated. HPC users are encouraged to point
their build scripts, make�les, etc. to the new LAPACK
and SCALAPACK installations.

On Power6 and BlueGene/P, IBM's Engineering and Sci-
enti�c Subroutine Library (ESSL) provides the platform-
optimized BLAS routines required by LAPACK (and
SCALAPACK). In addition, ESSL also contains optimized
equivalents for a number of (but not all) LAPACK rou-
tines. When linking an application with ESSL and LA-
PACK it is therefore essential to force the linker to pick
ESSL symbols before their LAPACK equivalents in order
to get the high-performance equivalents from ESSL. See
the output of the commands module help lapack or
module help scalapack for speci�c advice on proper
link lines to use.

Note that for historic reasons there is a well-known incom-

patibility between a small subset of LAPACK routines and
their ESSL counterparts. If an application uses any of
the routines (S,D,C,Z)GEEV, (S,D)SPEV, (C,Z)HPEV,
(S,D)SPSV, (C,Z)HPSV, (S,D)GEGV, (S,D)SYGV, spe-
cial care must be taken as ESSL and LAPACK do not use
the same argument lists for these routines (see the ESSL
documentation for details; a forthcoming ESSL release
is expected to �nally cure this inconsistency and provide
full LAPACK compatibility). Since developers often pre-
fer to adhere to the LAPACK quasi-standard rather than
adapting their applications to match the ESSL variant of
the argument list, RZG packaged a library named 'lapack-
compat' which contains only the LAPACK variants of the
aforementioned routines. This allows to construct a link
line which picks optimized equivalents (excluding the 'in-
compatible routines') from ESSL and everything else from
LAPACK. For details, see the output of the command
module help lapack.

NAG SMP library for Power6

The RZG traditionally supports di�erent sequential ver-
sions of the NAG Fortran77 and Fortran90 library on the
Power6 machine. The licensed product comprises a col-
lection of about 1.600 numerical and statistical routines.
NAG libraries are generally available for many compilers
and for many platforms and operating systems. Since

∗Tel.: +49(89) 3299-01, e-mail: benutzerberatung@rzg.mpg.de, URL: http://www.rzg.mpg.de/
Editor: H.Lederer & M.Rampp, Rechenzentrum Garching am IPP, Boltzmannstr. 2, 85748 Garching

http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/scalapack
http://www.netlib.org/scalapack
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl44.guideref.doc/am501_apb.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl44.guideref.doc/am501_apb.html
mailto:benutzerberatung@rzg.mpg.de
http://www.rzg.mpg.de/

Bits & Bytes, No. 184, July 2011 2

February 2011, also an SMP parallel version of the latest
Mark22 is installed on the Power6 under a trial license
for one year. This version is especially tuned for multi-
core processors and shared-memory systems. For more
speci�c product information and library contents, please

visit NAG's website. Users are kindly encouraged to try
this new installation; any feedback will be welcome. All
versions of the NAG library on the Power6 are provided
as modules.

New Scalable Eigenvalue Solver

Hermann Lederer

The computation of selected eigenvalues and eigenvectors
of a symmetric (Hermitian) matrix has relevance for vari-
ous science disciplines. For the calculation of a signi�cant
portion of the eigensystem typically direct eigensolvers are
used. For large problems, the eigensystem calculations
can become the computational bottleneck. The eigen-
value solver for the symmetric eigenproblem, as taken
from the ScaLAPACK library - the state-of-the-art for di-
rect solvers for the calculation of a big part or all eigen-
vectors - shows limited scalability, even for large problem
sizes. As a consequence, a project called ELPA was ini-
tiated, supported by the German Federal government, to
develop and implement an e�cient eigenvalue solver for
peta�op applications (BMBF Grant 01IH08007 from Dec
2008 to Nov 2011). The ELPA consortium of Univer-
sity of Wuppertal (BUW), Technical University of Munich
(TUM), Fritz-Haber-Institute (FHI), MPI for Mathemat-
ics in the Natural Sciences (MIS), IBM and RZG has now
developed new one-step and two-step procedures for a di-
rect solver, showing scaling behaviours highly superior to
that of using ScaLAPACK routines. The new one-step
and two-step solvers have been made publicly available
with a LGPL license so that the new solvers can be used
in own programs. On RZG's Power6 and BlueGene/P the
libraries are available as modules. To obtain the source
code, please see http://elpa.rzg.mpg.de/software

and the corresponding WIKI page. The technical details
are described in the following paper: T. Auckentaler et
al: Parallel solution of partial symmetric eigenvalue prob-
lems from electronic structure calculations, in press 2011
by Parallel Computing doi:10.1016/j.parco.2011.05.002.

The new solver is already used in production in the sim-
ulation package FHI-aims of the Fritz-Haber-Institute of
the Max-Planck-Society. In the meantime the new solvers
have been tested on the BlueGene/P PetaFlop system

JUGENE at FZ Juelich up to the full machine (294.912
cores). The �gure shows good scalability up to the full
PetaFlop machine of 72 racks with 294.912 cores using a
matrix size of 260.000. Findings are described in the cor-
responding Technical Report of FZ Juelich, April 2011
(see pages 27-30). Additional independent tests have
been successfully performed by an US scientist on the
Cray XE6 system 'Hopper' at NERSC, Berkeley.

Figure 1: Strong scaling of the eigenvalue solver for a
matrix of size 260000 on BlueGene/P at FZJ. Shown
are the total solver time (red), the time of the kernel
(black), and the time for transformation of a band matrix
to tri-diagonal form (green).The dashed lines give the the-
oretical perfect linear scaling. Note that the kernel part
scales perfectly. As a guideline the blue dashed-dotted
line shows the limit for a scaling of time proportional to
1/1.6n. (Figure by A. Marek, Juelich Scaling Workshop
Report, 2011)

HPSS - High Performance Storage System

Andreas Schott

At RZG hierarchical storage systems have a long tradi-
tion. Starting with the migrating �le system on the Cray
YMP in 1991 and later Cray T3E to the IBM Power4 and
Power6 HPC systems, and in addition the m-tree in AFS,

there has always been a mechanism to provide an auto-
matic migration of large �les to and retrieval back from
the tape storage. The initial implementation was based
on the Cray (later SGI) DMF (Data Migration Facility).

http://www.nag.co.uk
http://elpa.rzg.mpg.de
http://elpa.rzg.mpg.de/software
http://elpa-lib.fhi-berlin.mpg.de/wiki/index.php/Main_Page
http://www.sciencedirect.com/science/article/pii/S0167819111000494
http://aimsclub.fhi-berlin.mpg.de/
http://www2.fz-juelich.de/jsc/docs/printable/ib/ib-11/ib-2011-02.pdf
http://www2.fz-juelich.de/jsc/docs/printable/ib/ib-11/ib-2011-02.pdf

Bits & Bytes, No. 184, July 2011 3

Currently the migration software is using the HSM (Hier-
archical Storage Management) extension of IBM's TSM
(Tivoli Storage Management).

To cope with the growing demand for data storage, RZG is
now switching to HPSS for the hierarchical storage man-
agement. As in the past this underlying software is in
principle transparent to the end user. Features of this
software are extreme scalability and throughput, which
leverages the limitations already seen in the current soft-
ware. HPSS is used in world-wide leading computer cen-
tres, where huge amounts of data need to be stored. The
new system will provide faster access to tape-migrated
data; this refers both to the r-tree of the HPC system

and the m-tree of AFS.

The data currently located in either of the �le-system
trees will be migrated to the new system without any
user action required; it will be triggered and supervised
by RZG sta�. Only the very few users who still save data
with the arc command are requested to contact RZG on
how to transfer and archive that data.

The new HPSS system is providing a future-proof path to
the long-term storage of data, both for the automatically
migrating hierarchical �le systems, and the long-term data
archives in general. The start of operation is planned for
October 2011.

Performance Analysis with IBM HPC toolkit

Markus Rampp

The IBM High Performance Computing Toolkit (HPCT)
is a collection of tools for analyzing the parallel and serial
performance of applications with a particular focus on
collecting hardware-speci�c performance counters. The
package comprises libraries and executables for instru-
menting and pro�ling applications and for the analysis of
collected pro�ling data. HPCT is available on RZG's HPC
systems, Power6 and BlueGene/P as a module. Note
that due to di�erent software levels, the HPCT versions
and hence some details of usage and functionality of the
toolkit di�er on Power6 and BlueGene/P (see the RZG
webpages for details).

This article presents a brief introduction to HPCT and its
basic usage and provides some practical hints for perfor-
mance analysis of actual applications. We shall focus on
compute performance here and will not address HPCT's
capabilities for pro�ling I/O. See the documentation on
RZG's webpages for detailed usage instructions (example
link lines etc.) and for further documentation and refer-
ences.

Overview

The IBM High Performance Computing Toolkit comprises
the following major components:

• hpccount

The hpccount command collects and reports to stdout a
number of basic performance characteristics of the ap-
plication like the execution wall clock time, resource uti-
lization statistics, hardware performance counters infor-
mation and derived metrics. Similar to the basic unix
command time, the invocation of an executable is simply
pre�xed with the command hpccount (see Example 1,
below).

• libmpitrace

The mpitrace library allows to pro�le MPI function calls
in an MPI application written in C or FORTRAN, and to
create a trace (timeline) of those MPI calls. The traces
can be used to visualize and analyze MPI communication
patterns and timelines. In order to use the mpitrace li-
brary applications simply need to be relinked. Note that
libmpitrace should only be used in single threaded appli-
cations or applications in which MPI function calls are
made only on a single thread.

• libhpm

The hpm library provides routines for manually instru-
menting individual sections of a source code written in C
or FORTRAN, by inserting special subroutine calls, like,
e.g. f_hpmstart() and f_hpmstop() around regions of
interest. For instrumenting threaded regions, e.g. code
inside an OpenMP-parallel loop, thread-safe variants of
these subroutines (e.g. f_hpmtstart(), f_hpmtstop())
must be used.

• hpctInst

The hpctInst command allows to instrument subsections
(can be subroutines, OpenMP regions, MPI routine calls,
or ranges of lines of source code) of an application written
in C or FORTRAN in order to gather performance char-
acteristics similar to those reported by hpccount, but on
a user-de�ned, typically more �ne-grained level. Instru-
mentation is performed without recompilation, provided
debug symbols were created in the compilation step (-g).

• peekperf and peekview

Peekperf is the main graphical frontend to HPCT.
Peekview is a graphical utility to visualize MPI trace in-
formation gathered by libmpitrace.

Bits & Bytes, No. 184, July 2011 4

Comparison with other tools

The distinguishing feature of HPCT is its ability to collect
hardware-speci�c performance counters. In that respect,
in-depth analysis with HPCT should be considered as a
second step, namely trying to understand why overall ap-
plication performance might be limited by certain parts
of the code, after having localized where this happens
by applying simpler tools like tprof, gprof, RZG's per�ib,
scalasca or alike. The performance tool scalasca (see Bits
and Bytes no. 182) in particular allows to conveniently
analyze also the communication and scalability properties
(MPI routine breakdown, load-balance analysis, ...) in an
integrated and graphical way. However, scalasca's capa-
bilities concerning hardware-performance counters (avail-
able via the PAPI interface), and in particular derived
metrics like Flop rates, are not as comprehensive as those
provided by HPCT.

For comparison, RZG's performance library per�ib deliv-
ers a concise overview of runtimes and Flop rates for all
user-instrumented sections of an application. As opposed
to HPCT, per�ib and scalasca are available also on the
linux clusters operated by RZG..

Hints and basic pro�ling strategies

• di�erent pro�ling approaches with HPCT should
not be mixed, i.e. an executable already instru-
mented with libhpm should not be instrumented or
pro�led with a another tool, like, e.g., hpctInst or
hpccount.

• while the overhead by running an executable with
hpccount is virtually negligible we recommend to al-
ways assess potential pro�ling overhead introduced
by libhpm, libmpitrace or hpctInst by comparing
runtimes with those of the uninstrumented binary.
Pro�ling overhead may become non-negligible, for
example, if huge numbers of MPI or subroutine calls
get instrumented in an application.

• due to its negligible overhead hpccount can be used
routinely in production runs. This allows to docu-
ment the performance history of an application and
can help identifying unexpected performance varia-
tions due to code changes or system updates.

• in order to assess and optimize the performance of
an application with HPCT the following steps are
recommended to be taken in the given order:

1.) measure overall program performance with hpc-
count.

Example 1 (see below) shows typical hpccount invocation
and sample output. Besides the numbers given in sec-
tion named 'Resource Usage Statistics' metrics like
'Utilization rate', 'Instructions per run cycle'
and 'percent of peak performance' should be con-
sidered in order to judge the overall e�ciency of the appli-
cation. Using the command hpccount -x a more verbose
output is produced for the last paragraph which explains
the de�nition of derived metrics like 'Utilization rate'.

2.) measure MPI communication characteristics and
performance with libmpitrace

The output shown below in Example 2 contains a basic
MPI routine breakdown and information of message-size
distributions. The mpi_pro�le for task 0, speci�cally, in
addition shows a communication summary for all tasks
and network mapping topology information (BlueGene/P
version only). Besides the mpi_pro�le.nn text�les also
�les named mpi_pro�le.nn.viz (nn denotes the MPI rank)
and a �le named single_trace are produced. The latter
two types of output �les can be viewed with the peekperf
or peekview utility, respectively.

Setting TRACE_ALL_TASKS = yes enables tracing of
all mpi ranks instead of only the �rst 256 ranks (which
is the default). OUTPUT_ALL_RANKS = yes overrides
the default which collects pro�le information for only 4
MPI ranks: rank 0, and the ranks with the maximum,
minimum, and medium MPI times.

3.) identify hot spots at the subroutine level using
hpctInst or peekperf

This step can possibly be preceded or replaced by analysis
with tprof, gprof, scalasca or alike.

4.) manually instrument individual code sections
with libhpm or peekperf

The output from both, hpctInst or libhpm-instrumented
applications is much similar to the one produced by hpc-
count (see below), but with multiple sections correspond-
ing to the instrumented subroutines or regions. Only this
last step requires modi�cation of the source code. If per-
formance counters are not of primary interest, per�ib in-
strumentation may be considered as an alternative.

~>module load hpct
~>poe hpccount ./a.out
hpccount v3.2.4 (IHPCT v2.2.0) summary

######## Resource Usage Statistics ########

Total amount of time in user mode : 0.456731 seconds
Total amount of time in system mode : 0.008140 seconds
Maximum resident set size : 12796 Kbytes

[...]
####### End of Resource Statistics ########

Execution time (wall clock time) : 0.467167809605598 seconds

[...]

http://www.scalasca.org/
http://www.rzg.mpg.de/documentation/bits-n-bytes?BB-View=182&BB-Document=7
http://www.rzg.mpg.de/documentation/bits-n-bytes?BB-View=182&BB-Document=7

Bits & Bytes, No. 184, July 2011 5

PM_RUN_INST_CMPL (Run instructions completed) : 3027444339
PM_RUN_CYC (Run cycles) : 2178381383

Utilization rate : 99.127 %
Instructions per run cycle : 1.390
Total scalar floating point operations : 2040.000 M
Scalar flop rate (flops / WCT) : 4366.740 Mflop/s
Scalar flops / user time : 4405.180 Mflop/s
Algebraic floating point operations : 2040.000 M
Algebraic flop rate (flops / WCT) : 4366.740 Mflop/s
Algebraic flops / user time : 4405.180 Mflop/s
Scalar FMA percentage : 99.314 %
Scalar % of peak performance : 23.412 %

Example 1: hpccount invocation and sample output

~>module load hpct
~>mpxlf90_r my_prog.F -L$IHPCT_HOME/lib -lmpitrace
~>export TRACE_ALL_TASKS = yes
~>export OUTPUT_ALL_RANKS = yes
~>poe ./a.out
~>cat mpi_profile .0
elapsed time from clock -cycles using freq = 850.0 MHz

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 9 0.0 0.000
MPI_Comm_rank 11 0.0 0.000
MPI_Isend 1292901 3167.7 4.129
MPI_Irecv 1292901 3309.4 1.382
MPI_Waitall 40485 0.0 28.012
MPI_Bcast 848 4.0 0.017
MPI_Barrier 6 0.0 0.126
MPI_Gatherv 847 6936.0 14.415
MPI_Scatterv 22 6936.0 0.381
MPI_Allgatherv 44 77528.0 1.065
MPI_Allreduce 893206 1530.7 85.489
MPI_Alltoall 46 2704.7 0.967

total communication time = 135.984 seconds.
total elapsed time = 2162.378 seconds.

Message size distributions:

MPI_Isend #calls avg. bytes time(sec)
58789 48.0 0.205

117578 100.0 0.321
[...]
MPI_Allreduce #calls avg. bytes time(sec)

87483 8.0 5.984
1950 16.0 0.886

[...]
MPI_Alltoall #calls avg. bytes time(sec)

44 2592.0 0.853
2 5184.0 0.115

Communication summary for all tasks:

minimum communication time = 135.984 sec for task 0
median communication time = 867.370 sec for task 746
maximum communication time = 896.198 sec for task 47

taskid xcoord ycoord zcoord procid total_comm(sec) avg_hops
0 0 0 0 0 135.984 41170680.00
1 1 0 0 0 887.305 41170680.00
2 2 0 0 0 889.404 41170680.00

[...]

Example 2: Linking a FORTRAN program with libmpitrace and example output for MPI task 0

	Next Generation Supercomputer
	Software updates on HPC systems
	New Scalable Eigenvalue Solver
	HPSS - High Performance Storage System
	Performance Analysis with IBM HPC toolkit

