
No. 183
November 2010 Bits & Bytes

Garching Computing Center of the Max Planck Society and the Institute for Plasma Physics∗

Boltzmannstraÿe 2, D-85748 Garching bei München

New Linux cluster for remote visualization

Klaus Reuter

Introduction

A Linux cluster with powerful graphics hardware was in-
stalled in the computing center in order to provide in-
teractive remote visualization services to scientists of the
Max Planck society. The production phase started in the
middle of October, 2010.

Scienti�c visualization has signi�cantly gained in impor-
tance over the last couple of years. This is partly due
to the strong increase in the size and complexity of typ-
ical data sets produced by massively parallel simulation
codes. Visual impression is an e�cient and intuitive way
to extract information from such huge datasets. In addi-
tion, visualization tools usually support quantitative anal-
ysis of multidimensional data, e.g. contour plots on slices
through the data set. Moreover, complementing the sci-
enti�c content of a publication or talk with illustrative
images and animations often helps a scientist to commu-
nicate results.

Cluster speci�cation

The new cluster (delivered by Hewlett Packard) comprises
6 visualization nodes with 2 NVidia FX5800 GPUs each.
5 of the nodes are equipped with 2 Intel W5580 quad core
CPUs and 144 GB RAM. For especially demanding tasks,
a large node with 4 Intel X7542 hexa core CPUs and 256
GB RAM is available. A machine with two Intel E5540
quad core CPUs and 144 GB RAM serves as login node.
The nodes are connected with a fast In�niBand network.
A 30 TB scratch �le system is dedicated to the cluster. In
addition, the scratch �le system (/ptmp) of the Power6
supercomputer and the DEISA �le system are accessible
from the visualization nodes. Thereby, HPC users can
investigate their simulation results directly.

To allow for interactive use of the visualization cluster
which is a requirement quite di�erent from non-interactive
simulation runs handled by batch systems, a special reser-
vation and allocation system (VSRT) has been developed.
Users can access VSRT via a web browser, reserve re-
sources on a calendar in advance, or start a visualization
session immediately. A single GPU, a single node, or sev-

eral nodes can be reserved and used from within a session.
At maximum, 12 visualization sessions are supported on
the cluster in parallel.

Figure 1: Temperature �uctuations in turbulent MHD
convection. Parallel ray casting on 4 nodes (32 CPUs)
using VisIt. Simulation: J. Pratt, W.-C. Müller (Max-
Planck-Institute for Plasma Physics), Visualization: RZG

Technical details

Technically, remote visualization relies on server-side ren-
dering and e�cient transport of the generated images to
the client (which is, in general, an arbitrary workstation
connected to the Internet). This method has the ad-
vantage that the client does not require special graphics
hardware and that raw data does not need to be copied to
the client. RZG has decided for the open-source solution
VirtualGL to transport image data. The generally recom-
mended mode of operation is to start a TurboVNC session
via VSRT which launches a precon�gured remote desktop
on a visualization node. Detailed information on how to

∗Tel.: +49(89) 3299-01, e-mail: benutzerberatung@rzg.mpg.de, URL: http://www.rzg.mpg.de/
Editor: T.Dannert & M.Rampp, Rechenzentrum Garching am IPP, Boltzmannstr. 2, 85748 Garching

mailto:benutzerberatung@rzg.mpg.de
http://www.rzg.mpg.de/

Bits & Bytes, No. 183, November 2010 2

connect is given by VSRT. The user can connect to the re-
mote desktop using an arbitrary VNC client, however, the
TurboVNC client is recommended for performance rea-
sons. It is freely available for all major operating systems.
Users of Unix-like operating systems locally connected at
Garching may alternatively use VirtualGL image transport
in combination with X forwarding (restriction to Garching
due to �rewall settings). Thereby, a visualization appli-
cation running on the remote server seamlessly integrates
into the user's desktop environment, without having to
use a remote desktop environment. Installation packages
for VirtualGL and TurboVNC can be obtained from the
download section in VSRT.

Visualization software and support

RZG provides a wide selection of software on the visu-
alization cluster, only few of which can be addressed in
the following. The versatile general purpose tools VisIt
and ParaView should satisfy most requirements. These
applications provide a plethora of methods for data anal-
ysis (e.g. cuts, volume rendering, iso surfaces, ...), are

designed for massive parallelism (MPI), and support non-
interactive rendering via Python APIs. To interactively
visualize data on Cartesian or spherical grids, the VA-
POR visualization platform is especially useful. A wavelet-
based multi-level data compression allows for excellent in-
teractivity. Apart from these tools, special purpose soft-
ware for applications from astrophysics, chemistry, and
biology is provided. Visit the RZG web pages to get a
comprehensive list of the available visualization software.
Applications can either be started via icons on the VNC
desktop or via wrapper scripts provided by RZG, e.g. 'rzg-
visit' to start VisIt. Visualization support is provided by
the application support group at RZG. A selection of on-
going and completed projects is presented on the RZG
visualization webpage.

How to access the cluster

Detailed information on how to access and use
the cluster is available at http://www.rzg.mpg.de/

visualization. Send email to visualization@rzg.mpg.de
to get an account on the visualization cluster.

Code validation tools

Andreas Marek

Given the ever-growing complexity of scienti�c codes and
also the target platforms (hardware and software environ-
ments, runtimes etc.), automated analysis and validation
of the source code and its runtime behaviour has become
an indispensable step in the process of validating an ap-
plication and its results. The following article introduces
some basic tools that assist the programmer in checking
and debugging it's code and it focuses on (parallel) codes
written in FORTRAN or C/C++.

The compiler

Careful interpretation of compiler output should always be
a precursor to employing more sophisticated code valida-
tion tools. Experience shows that compiler warnings and
messages quite often indicate problems and thus should
not lightheadedly be ignored. Of course, not every warn-
ing indicates a real problem, but it is good practice to
verify this by examining each warning individually and to
decide from case to case whether the compiler indicates
a real problem or not. It is also recommended to com-
pile a code with di�erent compilers (if available) and with
appropriate debug options ('array bounds' checking, 'di-
vision by zero signals', only to name a few) and to investi-
gate the warnings and error messages produced: it is well
known that some compilers are more strict than others
and a compiler comparison can already make some cod-
ing errors visible . Validation with the help of the compiler
can be complemented with employing one or more of the
following tools.

FORCHECK: A Fortran Veri�er and Programming

Aid

On Linux systems RZG provides a static syntax checker
and code analyzer for Fortran programs. Forcheck is a
commercial tool that can analyze individual program units
and/or the entire program for conformance to some For-
tran standard (FORTRAN 77, 90, and 95), for the use
of undeclared or uninitialized variables, obsolete language
features and many more.

On Linux systems Forcheck can be enabled via a module

module load forcheck

and be invoked with the command

forchk [options] source -files.

One might start with the following set of options

forchk -decl -f90 -ff -ancmpl -anprg -anref
-shcom -shinc -l forcheck.out *.f90

which will analyse all source �les (*.f90, supposed to
be in free format) and write a report to a �le (here:
forcheck.out). Speci�cally, in this example the following
actions resp. checks are performed:

http://www.rzg.mpg.de/visualization
http://www.rzg.mpg.de/visualization
http://www.rzg.mpg.de/visualization
http://www.rzg.mpg.de/visualization

Bits & Bytes, No. 183, November 2010 3

- Warnings for variables that have not explicitly declared in a type statement (-decl)
- Validate the syntax for conformance to FORTRAN 90 standard (-f90)
- Flag unreferenced objects , such as unreferenced common blocks , procedures ,

modules etc. (-ancmpl)
- Analyze the reference structure (-anref), show cross -reference listings (- shcom),

show include files(-shinc)

In the report output �le Forcheck will display informative,
warning or error messages.

Note that Forcheck provides an extensive set of options
to analyze a code, which cannot be explained in detail
here. The reader is referred to the manual (see http:

//www.forcheck.nl/downloads.htm). and is advised
to select and apply options and checks which are most
appropriate for the particular application.

MARMOT: MPI Correctness Tool

Marmot, developed at the HLRS Stuttgart and the TU
Dresden (see http://www.hlrs.de/organization/

av/amt/projects/marmot/), is a non-commercial tool
which aims at checking the correct MPI usage in a code
at runtime. It includes checking of conformance to the
MPI standard, the calling of MPI procedures, and moni-
tors usage of MPI resources.

At RZG, Marmot is provided on Linux systems (Intel com-
piler, Intel-MPI), both for purely MPI and hybrid MPI and
OpenMP codes.

It is available with the command

module load marmot

or

module load marmot -mt

, respectively.

MARMOT is provided as C++ library, which has to be
linked to the code in the correct order with the MPI li-
braries, a task which is easily accomplished by compiling
the code with the available wrapper scripts, e.g. one uses
the commands marmotf77 / marmotf90 for Fortran or
marmotcc / marmotcxx for c/c++ to compile the code.

In order to check the code one has to set the
LD_LIBRARY_PATH enviroment variable

export LD_LIBRARY_PATH=$MARMOT_LIBDIR: \
$LD_LIBRARY_PATH (bash syntax)

and simply execute the newly compiled executable with
one additional MPI-task � a Marmot �bookkeeper task�
� , e.g.

mpiexec -n 9 ... instead of mpiexec -n 8 ...

for an MPI job which would normally use 8 tasks.

If one cannot spend an additional MPI task for bookkeep-
ing, the test will run as well but execution might be slower
than expected. After completion of the run an output �le
provides information with di�erent severity levels ranging
from �note�, �information,� to �warning� or �error�.

In the above example, Marmot will write its analy-
sis in an ASCII format �le (default), a behavior that
one can change by setting the environment variable
MARMOT_LOGFILE_TYPE to another value prior to
the running of the job. Possible values are MAR-
MOT_LOGFILE_TYPE=0,1,2 for summary output in
ASCII, HTML, or CUBE format (which can be viewed
with the GUI provided with SCALASCA, see previous is-
sue (182) of Bites and Bytes), respectively.

VALGRIND: a memory debugging and pro�ling tool

On Linux systems RZG provides the free GNU-software
VALGRIND toolbox (see http://valgrind.org/), which can
be used for analyzing and debugging memory usage of a
code. Valgrind is best suited for C and C++ codes, but
can be used with Fortran codes as well. Valgrind com-
prises a core utility (called valgrind) and di�erent tools
for di�erent purposes:

MEMCHECK: a memory debugger, which checks all read
and writes to memory and can detect memory problems
like memory leaks, reading and writing to memory after
it has been free'd, and many more.

CACHEGRIND or CALLGRIND: cache pro�lers, which
can pinpoint the source of cache misses

MASSIF: a heap pro�ler, which can give you information
about memory usage

HELGRIND: detects synchronisation errors in programs
which use the POSIX pthread parallelization method.
Note that OpenMP might be supported, depending on
the compiler used to build the executable. Some ven-
dors use their own threading primitives, which cannot be
analyzed with Helgrind.

Using any of these tools requires preparing the code by
compiling with debug symbols (-g option) and it is not
recommended to use compiler optimizations higher than
-O0 or -O1.

Valgrind is made available by the commands

module load valgrind

or

http://www.forcheck.nl/downloads.htm
http://www.forcheck.nl/downloads.htm
http://www.hlrs.de/organization/av/amt/projects/marmot/
http://www.hlrs.de/organization/av/amt/projects/marmot/
http://www.rzg.mpg.de/documentation/bits-n-bytes?BB-View=182&BB-Document=0
http://www.rzg.mpg.de/documentation/bits-n-bytes?BB-View=182&BB-Document=0

Bits & Bytes, No. 183, November 2010 4

module load valgrind -mpi

for MPI programs, respectively.

In general valgrind is used like

valgrind --tool={memcheck ,cachegrind , \
callgrind ,massif ,helgrind} \

[valgrind -options] \
your -prog [your -prog -options]

As an example binary where no errors are found by Val-
grind we show the analysis of the standard listing �ls -l�
command, which is done by

valgrind --tool=memcheck --leak -check=yes ls -l

and obtain, see Output 1, shows that no error has been
found in the �ls� command.

An example error report (taken from http://

www.valgrind.org/docs/manual/manual-core.

html#manual-core.example) is shown in Output 2.
One should be aware that Valgrind might �nd errors or
warnings in libraries one uses, but which one can not �x
(like the GNU C library, MPI library, etc.) and thus one
does not want to see these errors in the analysis. This
can be achieved by writting a personal suppression �le
(see the Valgrind manual for more information).

Of course Valgrind provides much more possibilities for
memory analysis than what could be covered in this intro-
ductory summary. We would like to motivate the reader
to experiment with it and get familiar with its debugging
options.

==27134==
==27134== HEAP SUMMARY:
==27134== in use at exit: 20,050 bytes in 48 blocks
==27134== total heap usage: 646 allocs , 598 frees , 98,333 bytes allocated
==27134==
==27134== LEAK SUMMARY:
==27134== definitely lost: 0 bytes in 0 blocks
==27134== indirectly lost: 0 bytes in 0 blocks
==27134== possibly lost: 0 bytes in 0 blocks
==27134== still reachable: 20 ,050 bytes in 48 blocks
==27134== suppressed: 0 bytes in 0 blocks
==27134== Reachable blocks (those to which a pointer was found) are not shown.
==27134== To see them , rerun with: --leak -check=full --show -reachable=yes
==27134==
==27134== For counts of detected and suppressed errors , rerun with: -v
==27134== Use --track -origins=yes to see where uninitialised values come from
==27134== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

Output 1: The output of a Valgrind checking the �ls� command.

==25832== Valgrind 0.10, a memory error detector for x86 RedHat 7.1.
==25832== Copyright (C) 2000 -2001 , and GNU GPL 'd, by Julian Seward.
==25832== Startup , with flags:
==25832== --suppressions =/home/sewardj/Valgrind/redhat71.supp
==25832== reading syms from /lib/ld -linux.so.2
==25832== reading syms from /lib/libc.so.6
==25832== reading syms from /mnt/pima/jrs/Inst/lib/libgcc_s.so.0
==25832== reading syms from /lib/libm.so.6
==25832== reading syms from /mnt/pima/jrs/Inst/lib/libstdc ++.so.3
==25832== reading syms from /home/sewardj/Valgrind/valgrind.so
==25832== reading syms from /proc/self/exe
==25832==
==25832== Invalid read of size 4
==25832== at 0x8048724: BandMatrix :: ReSize(int ,int ,int) (bogon.cpp :45)
==25832== by 0x80487AF: main (bogon.cpp :66)
==25832== Address 0xBFFFF74C is not stack 'd, malloc 'd or free 'd
==25832==
==25832== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
==25832== malloc/free: in use at exit: 0 bytes in 0 blocks.
==25832== malloc/free: 0 allocs , 0 frees , 0 bytes allocated.
==25832== For a detailed leak analysis , rerun with: --leak -check=yes

Output 2: An example error output of Valgrind. It shows that 4 bytes at address 0x8048724 are illegally read. This
happens at line 45 of the source bogon.cpp, which was called from line 66 in bogon.cpp.

http://www.valgrind.org/docs/manual/manual-core.html#manual-core.example
http://www.valgrind.org/docs/manual/manual-core.html#manual-core.example
http://www.valgrind.org/docs/manual/manual-core.html#manual-core.example

Bits & Bytes, No. 183, November 2010 5

Power6 software upgrade

Ingeborg Weidl, Renate Dohmen

On the Power6 cluster 'vip', there was an upgrade of the
AIX operating system, of the LoadLeveler batch system,
of the parallel environment (poe, MPI) and of the Fortran
and C compilers at the beginning of November 2010.

The default compilers on 'vip' are now xlf 13.1.0.3 and
C/C++ 11.1.0.0, and OBJECT_MODE=64 is the de-
fault. With the latter setting, the -q64, -b64, -X64
switches of the compiler, linker, archiver, respectively, are

no more required.

The new version of the LoadLeveler batch system shows
improved scalablility and performance during job schedul-
ing and job dispatching.

The new version of poe has a number of new features.
Among others subtasking is supported, which allows users
to start concurrent parallel MPI jobs on a given number
of processors allocated via LoadLeveler.

	New Linux cluster for remote visualization
	Code validation tools
	Power6 software upgrade

