
No. 182
May 2010 Bits & Bytes

Garching Computing Center of the Max Planck Society and the Institute for Plasma Physics∗

Boltzmannstraße 2, D-85748 Garching bei München

New Bits & Bytes

Tilman Dannert, Markus Rampp

Dear reader,
after a longer break we are going to resume our semian-
nual schedule of the Bits & Bytes Computer Bulletin of
the RZG. Starting with this issue, No 182, Bits & Bytes is
published as a hyperlinked and ’living’ document on the
RZG web pages in the future http://www.rzg.mpg.de. A
condensed PDF version will be distributed via e-mail to all
registered users of our HPC systems.
At the same time we have opted to discontinue the ship-
ping of hardcopies via regular mail. Besides environmen-
tal considerations, this allows for relaxed page-count lim-
its and a more Wexible design. Along with these changes
and the introduction of a new layout readers may also

notice that thematically the focus has somewhat shifted
towards applications and application support. With the
help of concise articles centered around practical exam-
ples we’d like to draw the attention of RZG users to rele-
vant software and in particular to new tools, e.g. for de-
bugging and performance analysis of HPC applications.
The main aim is to ’lower the bar’ for non-specialists, i.e.
to allow users a quicker and more eXcient evaluation of
the relevance of a particular tool and to facilitate its adop-
tion and eXcient usage.
We hope that these updates can further improve the value
of the Bits & Bytes bulletin for the researchers’ practical
work on RZG’s computer systems. Comments and critics
are welcome, please send it to T.Dannert@rzg.mpg.de.

Introducing Environment Modules

Markus Rampp

Background: Environment modules

RZG has introduced the environment modules (cf. http:
//modules.sourceforge.net/) concept for managing
major software installations and for adapting the user en-
vironment on the main platforms, Linux (SLES) and IBM
AIX. The well known modules system is meanwhile em-
ployed by many computing centres. The main purposes
are 1) to adapt the user environment in order to allow the
user to locate and transparently work with software in-
stalled at various locations in the Vle system, and 2) to
switch between diUerent versions resp. releases of the
same software package. In particular, the user is no longer
required to explicitly specify paths for diUerent executable
versions, or keep track of PATH, MANPATH and related
environment variables in various shell-speciVc commands
or proVles. Instead, users simply ’load’ and ’unload’ mod-
ules to control their shell environment. To this end, sys-
tem administrators provide so-called moduleVles which
are typically named by the software package and option-
ally a version number (e.g. xlf/12.0). The most popular

shells are supported, including bash, ksh, and tcsh. Be-
sides managing diUerent software versions, the modules
approach allows system administrators to install software
in non-standard locations and also to relocate software
packages in a way that is transparent for the user by
adapting the moduleVle.

Usage of modules

For the user the most important module commands are
(complete reference at http://modules.sourceforge.
net/):

module help lists module subcommands and switches

module avail lists available software packages and ver-
sions which can be enabled (’loaded’) with the mod-
ule command.

module apropos 〈keyword〉 searches available module-
Vles for the speciVed keyword string and list all
matching modules

∗Tel.: +49(89) 3299-01, e-mail: benutzerberatung@rzg.mpg.de, URL: http://www.rzg.mpg.de/
Editor: T. Dannert, Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching

http://www.rzg.mpg.de
http://modules.sourceforge.net/
http://modules.sourceforge.net/
http://modules.sourceforge.net/
http://modules.sourceforge.net/
mailto:benutzerberatung@rzg.mpg.de
http://www.rzg.mpg.de/

Bits & Bytes, No. 182, May 2010 2

module help 〈package〉/〈version〉 provides brief docu-
mentation for the speciVed module.

module show 〈package〉/〈version〉 provides information
about the impact of the speciVed module to the
user’s environment.

module load 〈package〉/〈version〉 ’loads’ the module, i.e.
modiVes the user’s environment ($PATH, $MAN-
PATH, etc.)

module unload 〈package〉/〈version〉 ’unloads’ the mod-
ule

module list lists all modules which are currently loaded
in the user’s environment

Note that the module command is provided by default
only in interactive login shells. For non-interactive shells
(e.g. in shell scripts) a speciVc system proVle must be ex-
plicitly sourced (see the RZG documentation). In addition
to Linux (SLES) and IBM AIX, RZG maintains moduleVles
(but no ’client conVguration’ of the module system) also
for certain SUN SOLARIS software packages, which are
centrally managed by RZG (e.g., matlab, NAG compilers
and libraries, ...).
It is recommended to reference the environment variables
set by the moduleVle in scripts, makeVles etc., rather than
of relying on absolute paths to libraries, binaries etc. By
convention, an RZG moduleVle sets an environment vari-
able named 〈PKG〉_HOME (where PKG is the name of
the package, for example: MKL_HOME) which points to

the root directory of the installation path (see below for
example usage). Information about additional, package-
speciVc environment variables can be obtained with the
commands module help 〈package〉/〈version〉 and module
show 〈package〉/〈version〉.

Examples:

1) Interactive session on the command line, using the Intel
fortran compiler (default version) and Intel MKL (version
10.2 explicitly speciVed):

~> module load intel
~> module load mkl/10.2
~> ifort -I$MKL_HOME/include example.F \

-L$MKL_HOME/lib/em64t \
-lmkl_intel_lp64 \
-lmkl_sequential \
-lmkl_core

2) MakeVle (fragment):

FC=ifort

example: example.F
$(FC) -I$MKL_HOME/include test.F \

-L$MKL_HOME/lib/em64t \
-lmkl_intel_lp64 \
-lmkl_sequential \
-lmkl_core

GPGPU Computing

Klaus Reuter, Markus Rampp

Some background on GPGPU computing

Originally designed to be used in video cards, graphics
processing units (GPUs) have come into vogue in recent
years as cost and energy eXcient highly-parallel plat-
forms for general-purpose numerical computation. This
so-called GPGPU (General Purpose Graphics Processing
Unit) computing is now facilitated by AMD’s ATI Stream
and NVIDIA’s CUDA software development platforms and
runtime environments. So far, both technologies have at-
tracted a large community of users and developers. For
a Vrst overview of resources, news and activities see the
vendor-independent GPGPU.org portal or visit the web-
sites of AMD and NVIDIA. The current evolution of GPU
hardware technology clearly follows the trend towards
utilizing and promoting GPUs for general purpose compu-
tations. For example, the next generation of NVIDIA cards
(labeled ’Fermi’) will oUer error correcting (ECC) mem-
ory and hardware support for high-performance double-
precision arithmetic. Both features are mostly irrelevant
for the original purpose of GPUs (which is to accelerate

the generation of computer graphics), but are often cru-
cial in order to obtain a level of accuracy and reliability
required for numerical simulations in science and engi-
neering. The lack of ECC memory in the current NVIDIA
’Tesla’ cards has in fact been observed to cause intolera-
ble errors in some scientiVc applications. While the glossy
promises of major GPU vendors and technology enthusi-
asts (reporting performance gains of up to several orders
of magnitude) do not always hold for real-world applica-
tions, eXcient GPU implementations can indeed outper-
form optimized CPU implementations by a factor of 10
or more when comparing state-of-the-art GPU and CPU
platforms. Today, the growing portfolio of publicly avail-
able (often open source) GPU implementations of popu-
lar scientiVc application codes makes even moderate-sized
GPGPU systems such as RZG’s NVIDIA S1070 with 4
GPUs (see below) an attractive alternative to using, e.g.,
a small cluster of multicore CPU servers.

http://www.rzg.mpg.de/computing/software/modules
http://gpgpu.org

Bits & Bytes, No. 182, May 2010 3

DiUerences between CPUs and GPUs

GPUs are diUerent from CPUs in many respects. Most im-
portantly, GPU devices are not operated as independent
compute platforms but are attached to a conventional host
CPU system. In that context, the GPU is often regarded as
a ’coprocessor’ or ’accelerator.’ The limited bandwidth of
the PCIe bus connecting the host with the devices puts
constraints on numerical algorithms suitable for GPGPU
computing. Data transfers from the host to the device
have to be minimized, respectively balanced with the com-
putational intensity of the calculations delegated to the
GPU. As a rule of thumb reported by practitioners, the op-
eration count of algorithms should scale at least with the
square (N2) or even cube (N3) of the amount N of the
transferred data.

On the GPU, SIMD methodology (single instruction, mul-
tiple data) applies. Consequently, data-parallel algorithms
beneVt most from GPGPU computing. Using one of the es-
tablished software-development frameworks (such as ATI
Stream, CUDA, or OpenCL), the programmer implements
a multi-threaded code. During runtime, blocks of threads
are generated which execute independently from each
other. Comparing typical CPU and GPU designs on the
hardware level, a larger fraction of transistors is devoted
to data processing than to caching and Wow control in a
GPU, leading to a much larger number of arithmetic logic
units (ALUs, see Vgure). For example, the current NVIDIA
’Tesla’ GPU contains 30 so-called multiprocessors with 8
cores each. Moreover, a large number of threads is man-
aged eXciently in hardware. Careful consideration of the
memory layout and hierarchy is crucial to achieve good
performance. Penalties for not taking into account the
GPU architecture usually turn out to be much more severe
than programmers’ experience with multicore or vector
processors would suggest. The large number of ALUs mo-
tivates why GPUs are sometimes classiVed as ’manycore’
processors, alluding to the multicore architecture of CPUs

and anticipating a possible convergence of both technolo-
gies in the future.

The OpenCL framework

Obvious concerns about the lack of portability of GPGPU
applications across diUerent platforms can be somewhat
appeased by considering the achievements of recent ef-
forts in standardization. The major players, including the
competitors AMD and NVIDIA, have partnered to cre-
ate, maintain, and actively develop OpenCL, which is an
open standard for writing portable programs for hetero-
geneous platforms consisting of GPUs, CPUs, and other
kinds of processing units. While the proprietary soft-
ware platforms may currently still oUer superior ease-
of-development and application performance, OpenCL
clearly provides a promising perspective for developing
and managing portable GPGPU applications. Applica-
tions developed under CUDA today may be translated to
OpenCL at a later time by employing a more or less auto-
matic procedure, as NVIDIA claims.

The NVIDIA Tesla S1070 platform deployed at RZG

In December 2009, RZG has installed a system for devel-
oping and testing GPGPU computing applications and for
evaluating the potential of GPUs for high-performance
computing. The system comprises a compact NVIDIA
Tesla S1070 unit with four FX 5800 GPUs and two CPU
servers, each equipped with two Intel ’Nehalem’ quad-
cores. Each CPU server is attached to 2 GPUs of the Tesla
unit. The software environment supports application de-
velopment using the NVIDIA CUDA toolkit or OpenCL. A
detailed and up-to-date technical documentation can be
found on the RZG web pages.
The system is mainly dedicated to testing, benchmark-
ing and developing GPGPU applications by or in collab-
oration with the application support group at RZG. Pro-
duction applications can be hosted and scheduled on re-
quest. A number of popular scientiVc codes, mostly orig-
inating from the bioinformatics (blastp, smith-waterman,
hmmer, ...), molecular dynamics, and quantum chemistry
(gromacs, lammps, ...) domains have already been ported
to GPUs and are publicly available at the NVIDIA website.
Users interested in developing or running GPGPU applica-
tions are kindly asked to contact RZG application support
(contact: markus.rampp@rzg.mpg.de).

Applications: Performance Analysis with Scalasca

Tilman Dannert

Short description

Since some months a new performance analysis tool is
available at RZG. The scalasca tool is developped by the

Forschungszentrum Jülich and is able to automatically in-
strument a code on subroutine level or one can also in-
strument the code by user regions. The tool is designed
to be scalable up to tens of thousands of cores and even

Bits & Bytes, No. 182, May 2010 4

more. The main perspective of scalasca is the MPI perfor-
mance, it is able to measure wait times, load imbalances
and synchronization times in the trace mode.
It is available on vip, genius and on the Linux clusters via
the loading of the respective module.

Example usage

We will show the usage of the tool by examining the user
code GENE on Power6. After logging into the machine we
load the scalasca module:

module load scalasca/1.3

Compilation

Now we have to recompile the source code with the
scalasca instrumenter. This is simply done by preVxing
the compile and link commands with

scalasca -instrument

This is easiest done by manipulating the makeVle. In our
case the Fortran compiler is set by the makeVle variable
FC, which is now preVxed and gives

FC = scalasca -instrument mpxlf95_r

Execution

After compiling, we can run the instrumented binary with
the scalasca analyzer. To do so, we preVx the usual MPI
runcommand with

scalasca -analyze

This gives for our example conVguration with 8 processors
the command

scalasca -analyze poe ./gene -procs 8

This starts by default the summary mode (instead of trace
mode) of scalasca. It creates a directory and therein a Vle
summary.cube.gz. The directory which is created to hold
the summary or trace data is created by scalasca with a
name constructed of the code name, number of processors
etc. But the name can also be given by the EPK_TITLE en-
vironment variable. It is necessary to set this variable to a
non-existing name as otherwise scalasca will abort.

Inspection of the results

To read the performance results, enter the third call of
scalasca by

scalasca -examine subdir/summary.cube.gz

This starts the CUBE graphical interface for the perfor-
mance data. The description of this interface can be found
in the User guide for scalasca. Roughly described, the cube
interface consist of three views:

1. Left are the metrices of the summary, like time, or
time in communications etc.

2. In the middle, you Vnd the source related things, like
subroutine name or name of user region in a call
tree.

3. The rightmost window shows the system tree, i.e.
the nodes on which the code ran. This is good for
controlling load balance.

For the example, we get the following CUBE view:

What we can learn from this view is that the total time of
the run was 819 s, from which 703 were spent in the sub-
routine __initial_value_comp_NMOD_initial_value and
these 703 seconds are equally distributed over the 8 pro-
cesses, each taking 87.90 s.
To get more information, one has to dig further into the
call tree and has to investigate several diUerent metrices.
One common use case is to distinguish compute and com-
munication time. If all communication is done via MPI one
gets this result by extending the metric tree.

Now one can clearly see that the communication only
takes 11.5 seconds compared to 806 s of computation.
For the timeloop of the code, which is hidden in the ini-
tial_value subroutine, one has only 4.39 s of communica-
tion, which will not be relevant for performance optimiza-
tion. To further optimize the code, one has to look more
for single-processor performance. To do this with hard-
ware counters, one has Vrst to further cook down the per-
formance to some routines.
So we extend the call tree and get

Bits & Bytes, No. 182, May 2010 5

From this view, one can deduce, that it would be advanta-
geous to instrument the three routines

__aux_fields_NMOD_calc_aux_fields
__calfulrhs_xky_1_NMOD_block1_xky
__calfullrhs_xky_1_NMOD_block2_xky

for further investigation with performance counters to
see, where one can improve performance. One possi-
bility to use hardware counters is inside of scalasca by
using the PAPI support of scalasca. Another possibil-
ity is to use the High performance toolkit (HPCT) from
IBM on Power6 or BlueGene architecture. It will be
topic of the next issue of Bits and Bytes, but documenta-
tion is already accessible at http://www.rzg.mpg.de/
computing/hardware/Power6/profiling.html.

Network ConVguration Templates for PCs

Christof Hanke

RZG now provides some templates of how to conVgure
stand-alone PCs within the IPP to use NTP (time-server),
Kerberos and AFS eXciently. For the locations Greifswald
and Garching, separate templates have been prepared. If
you are not within IPP, but want to use the AFS-cell ’ipp-
garching.mpg.de’ you should use the conVguration for the
location closest to you. If you are in doubt, use the lo-

cation Garching. These templates are meant to be used
for MS-Windows PCs which are not a member of the
Active Domains (ipp.mpg.de, ipp-hgw.mpg.de) or UNIX-
machines.
The conVguration templates are located under
: http://www.rzg.mpg.de/networkservices/
configuring-your-pc

New RZG Gateway Machine

Ingeborg Weidl

In February 2009, the IBM Power4 hardware of the RZG
gateway machine ’gate.rzg.mpg.de’ (’sp.rzg.mpg.de’) was
replaced by the new Power6-550 technology. ’gate’ pro-
vides access to the RZG computing facilities for general

users. The machine has 8 CPUs available and 32 GB of
main memory. The operation system is AIX 5.3. The users’
home directories are located in AFS. Batch processing is
no longer supported on ’gate’ (’sp’).

Update on Mass Storage

Manuel Panea-Doblado

The tape library used by the TSM backup and archive
servers, a SUN/Stk SL8500 with 10000 tape slots, was
moved last July to a new location in the computing cen-
tre. This was necessary in order to expand it, since the
available Woor space at the old location was not enough.
The tape library is about 7 meters long and 2 meters wide.
After it had been moved, a second library with 1500 tape
slots was installed next to the Vrst one. The two libraries
are interconnected, allowing any tape to be mounted in
any tape drive. In addition, 7 new LTO4 tape drives were
installed, giving a total of 24 LTO3 and 21 LTO4 tape drives

in use by the two libraries.
An analysis of the amount of stored data reveals an expo-
nential growth of the total data volume over time, with a
doubling of the total volume about every one and a half
years. By the end of 2009, the second tape library will be
further expanded to about 5000 tape slots. By mid-2010
the next generation LTO5 tapes -with a native capacity of
1.6 terabytes, i.e. double the capacity of LTO4 and four
times that of LTO3 tapes- are expected to become avail-
able on the market. This will allow us to copy all our LTO3
tapes to LTO5 tapes, thereby freeing up several thousand

http://www.rzg.mpg.de/computing/hardware/Power6/profiling.html
http://www.rzg.mpg.de/computing/hardware/Power6/profiling.html
http://www.rzg.mpg.de/networkservices/configuring-your-pc
http://www.rzg.mpg.de/networkservices/configuring-your-pc

Bits & Bytes, No. 182, May 2010 6

tape slots for new data.
Last spring, the computers where all our TSM server pro-
cesses run were replaced by new machines. All servers
(except two) run now on one of four identical IBM Power6
machines, each with 16 CPUs, 32 GB of RAM, Gigabit Eth-
ernet, 4 Fibrechannel ports and about 8 terabyes of disk
space. Of the remaining two servers, one runs on a node of

the High Performace Computer, managing a Hierarchical
Storage System to provide users with virtually unlimited
storage space. The other one runs on a dedicated machine
and keeps data sent by the TSM servers at the LRZ (Leib-
niz Rechenzentrum), with whom we have an agreement to
cross-mirror certain categories of data, thereby increasing
data availability and reliability.

System Environments for HPC

Ingeborg Weidl, Johannes Reetz

IBM Power6 system ’vip’

The IBM Power6 supercomputer ’vip’ (207 compute nodes,
6 I/O nodes, 1 node for the Hierarchical Storage Manage-
ment, all connected by a fast 8-plane InVniBand network)
is in production since June 2008. A Power6 node has 32
processors, each with 2 hardware threads, thus there are
6624 processors (or 13248 logical CPUs) available for com-
puting, with a total main memory of 18.5 TB and a peak
performance of 120 TF/s.
The operating system of the Power6 cluster is AIX 6.1 with
the traditional parallel programming environment (MPI,
ESSL/PESSL). The current compiler levels are Fortran xlf
12.1, C xlc 10.0 and C++ xlC 10.0. The batch system is
LoadLeveler 3.5.
The Power6 processors can be used in ’Simultaneaous
Multithreading’ (SMT) mode. The SMT mode increases
the performance of most applications signiVcantly. We are
using the SMT mode with 64 logical CPUs as the default
on the Power6 nodes, but it is possible to use a Power6
node in ’Single Thread’ (ST) mode with 32 CPUs as well.
Meanwhile, about half of the batch jobs are using the SMT
mode.
Testing and debugging programs interactively can be done
on a dedicated Power6 node, the vip100. On the login node
vip.rzg.mpg.de (vip001), interactive usage of poe is not al-
lowed to avoid memory constraints.
The total disk space on the Power6 system is about 400 TB.
There are 3 GPFS Vle systems available that are symmet-
rically accessible from all Power6 nodes:

/u (60 TB) for permanent user data. The users’ home
directories are in /u.

/ptmp (320 TB) for temporary job I/O. Files in /ptmp that
have been not accessed for more than 14 days are
removed automatically.

/r for migrated data (with an online disk space of 30

TB).

The AFS Vle system is available only on the login node
vip001 and on vip100. Please note that no system backups
are done neither of /u nor /ptmp.
Like the former Regatta cluster, the Power6 cluster ’vip’
is part of the European DEISA (Distributed European
Infrastructure for Supercomputing Applications) project.
Within the ’DEISA Extreme Computing Initiative’ (DECI)
the RZG provides computing resources for the most chal-
lenging applications in Material Science, Bio Sciences,
Plasma Physics, Earth Sciences, and Engineering.
Since the beginning, the Power6 machine is very well uti-
lized (about 90-95%), and a considerable number of appli-
cations is using 512 and more processors.

IBM BlueGene/P genius

In October 2008, the Blue Gene/P system ’genius’ was up-
graded from 3 to 4 racks. There are now 4096 quad-core
processors (i.e. 16384 cores) available with a total main
memory of 8 TB. The peak performance is 55 TF/s.
Communication is done using a fast 3D torus network,
disk I/O is done via a 10 Gbit/s Ethernet network. The
GPFS Vle systems /u and /ptmp are shared by the Blue
Gene/P and the Power6 system. AFS is only available on
the login node ’genius.rzg.mpg.de’, not on the Blue Gene/P
compute nodes.
The operating system of the Blue Gene/P is Linux
(SLES10), but the programming environment includes the
Fortran xlf 11.1 and C/C++ 9.0 compilers and the ESSL
library from IBM. As the batch system we are running
LoadLeveler 3.5.
Most of the highly parallel applications on ’genius’ are us-
ing 2048 cores up to 8192 cores. The utilization of the ma-
chine is around 85-90%. The Blue Gene/P also participates
in the DEISA project.

	New Bits & Bytes
	Introducing Environment Modules
	GPGPU Computing
	Applications: Performance Analysis with Scalasca
	Network Configuration Templates for PCs
	New RZG Gateway Machine
	Update on Mass Storage
	System Environments for HPC

