Bits & Bytes

No. 177 RZG Computer Bulletin July 2004

Computing Center of the Max Planck Society and the Institute for Plasma Physics*

Xeon-based Linux cluster vs. IBM Regatta for small jobs

The IBM Regatta based supercomputer with High Performance Switch (“Federation Switch”) is heavily overloaded,
especially with large jobs up to 512 processors. This causes real bottlenecks for rather small jobs requiring only up
to 32 processors. Therefore benchmarks have been carried out testing how well current Intel based Linux systems
are suited to host parallel 16-processor jobs. Five codes have been selected from the spectrum of applications on
the Regatta system as sample codes with different characteristics with respect to the parallelization strategy and the
amount of communication involved. On the Linux side up to 8 nodes of a Blade Center with a Gigabit-Ethernet
connection are used. Each blade is provided with two 2.8-GHz-Xeon processors and 4 GB of memory.

We suggest three different scenarios how to run the two processors on each blade: for memory intensive jobs occupy-
ing more than 50 % of the allocatable physical memory it is appropriate to use only one processor (case I); for two
processes which can run simultaneously on each blade both processors should be used; here we distinguish between
case II of two sequential jobs and case III of two processes of a parallel job using MPI or OpenMP.

On the Regatta side we investigated the scenario of 32 processes running concurrently on the 32 processors of one
node. This scenario corresponds to the efficient way how the Regatta nodes are used at the computing center. Of
course, optimal performance would be achieved if a sequential job would run on an “empty” node with 31 processors
idling, but this scenario is only of academic interest.

Refraining from all details the benchmark results can be summarized in the following table which shows the perfor-
mance between the Linux cluster and an IBM Regatta node. For sequential 1-processor runs we used case I and for
parallel 16-processor runs we used case III on the Linux cluster. Both the relative performance between the Linux
cluster and the Regatta node and the speedup on the two machines are listed.

The single-processor performance of the Xeon-based
Linux cluster is on the average about 1.5 times higher

relative performance Speedup than that of the IBM Regatta node, while the relative

Xeon:Power 4 t1 16 performance for 16 processors is 0.9 on average. The per-

Code 1 proc. 16 proc. Xeon | Power4 formance of a sequential job on the Linux cluster drops
CPMD 1.8 0.95 9.1 17.0 by about 20 % if one proceeds as described in case II.
TORB 14 1.0 11.4 15.3 This is due to the fact that two jobs occupying concur-
GENE9 0.8 1.0 10.5 13.5 rently the same blade have to share the access to the
Wien2k 2.0 0.5 2.6 9.8 memory which causes a bottleneck. However, the effect is
SDTrimSP 1.6 0.9 6.3 11.8 moderate and causes on the one side the relative perfor-
average 1.5 0.9 8.0 13.5 mance to drop from 1.5 to 1.3 on average. On the other

side, the speedup of the Linux cluster increases from 8.0
to 10.0 on average. It increases because for case II the
memory bottleneck is already part of the one-processor
run.

Table 1: relative performance and speedup of the
Xeon-based Linux cluster vs. IBM Regatta.

Note, however, that for very communication-intensive codes like Wien2k the IBM Regatta is superior to the Linux
cluster when using 16 processors, as the high amount of communication can be handled much better by the IBM
Regatta system than by the Gigabit-Ethernet network of the Linux cluster. Thus, for communication-intensive codes
faster interconnects have to be considered, and tests are in progress.

All in all, the benchmark results show clearly that for small jobs using 16 processors the Linux cluster can be
regarded as a fully adequate alternative to the IBM Regatta provided the parallel program in question is not too
communication-intensive and memory-demanding (< 2 GB per processor).

A more detailed discussion on the benchmark codes and methods and on the results can be found in what follows.

*Max-Planck-Institut fiir Plasmaphysik, Boltzmannstrafie 2,
D-85748 Garching bei Minchen, tel.: +49(89)3299-01, e-mail:
benutzerberatung@rzg.mpg.de, URL: http://www.rzg.mpg.de/
Editorial: Dr. Roman Hatzky, Tel. -1707

mailto:benutzerberatung@rzg.mpg.de
http://www.rzg.mpg.de/

The benchmark codes

CPMD, a parallelized plane wave/pseudopotential im-
plementation of Density Functional Theory, particularly
designed for ab-initio molecular dynamics. For the
benchmark carried out here the MPI parallel version of
the code is used.

TORB, a global nonlinear simulation code for the time
evolution of ion-temperature-gradient driven instabilities
in fusion plasmas. A Jf particle-in-cell (PIC) method
is used to solve the coupled system of gyrokinetic equa-
tions. The code is very well parallelized and achieves a
nearly optimal speedup on up to 512 processors on the
IBM Regatta system. For the benchmark done here the
communication implemented via MPI is dominated by
particles exchanged between neighboring processors.

GENEY9, a code for nuclear fusion theory in tokamaks.
GENE (Gyrokinetic Electromagnetic Numerical Experi-
ment) uses a finite-difference method to solve a nonlinear
system of partial integro-differential equations. It is par-
allelized using MPI and OpenMP.

Wien2k, a quantum-chemical code for calculating elec-
tronic configurations in crystals. The code contains as a
main part an eigenvalue solver which is parallelized by
means of the freely available ScaLAPACK library. It is
in the nature of the underlying algorithm that this part
of the code is highly communication-intensive. The par-
allel implementation is based on the MPI communication
library.

SDTrimSP, a Monte-Carlo code to simulate target-
sputtering processes. Contrary to many other Monte-
Carlo codes the amount of communication is in this case
not negligible, because the target is updated regularly
which makes it necessary to sum up the partial results
from all processors from time to time. But the commu-
nication, which is established via MPI, is clearly not the
dominating part of the code.

All codes are written in Fortran.

Benchmark systems and methods

The systems used for the benchmarks are rather small.
They consist of up to 16 processors and have the following
characteristics.

IBM Regatta: One dedicated p690 node with 32
(Power 4) processors at a clock rate of 1.3 GHz and
64 GB of memory is used. Therefore, the MPI com-
munication is handled via shared memory without the
high-performance communication network of the Regatta
being involved. To simulate realistic conditions as many
copies of a given program are started as to make all pro-
cessing elements (PEs) busy. To obtain e. g. the runtime
for a 4-processor program 8 copies of this program are
run simultaneously. All codes are compiled with the IBM
XLF Fortran compiler.

Linux Blade Center: Up to 8 nodes of a Blade Center
with a Gigabit-Ethernet connection are used. Each blade
is provided with two 2.8-GHz-Xeon processors and 4 GB
of memory. The RZG supports two compilers for this
architecture; to generate the benchmark codes the Intel
Fortran Compiler v8.0 alternatively the Lahey/Fujitsu
Fortran Compiler v6.2 together with the communication
library mpich are used. Different operation modes are
tested by starting one, two or even four processes per
dual-processor node. The latter is an attempt to make
use of the so-called hyperthreading capability of the Xeon
processor, which means that two processes share the re-
sources of one processor simultaneously and gain from a
skillful pipelining mechanism.

Results

The gathered benchmark results are presented with re-
spect to the following aspects: the quality of the two
Linux compilers, the performance of the diverse opera-
tion modes on the Linux cluster and a comparison of the
performance for the two architectures.

Comparison between the two Linux compilers

Three of the codes were tested with both Linux compil-
ers, and the observation is that the code generated by
the Intel Linux compiler is generally significantly faster
than that generated with the Lahey/Fujitsu compiler.
Refraining from all details the result is that the perfor-
mance gain is about 1.6 with the Intel Fortran compiler.

However, the Lahey/Fujitsu compiler has the better run-
time diagnostic capabilities to detect e.g. uninitialized
variables, array bound violations and inconsistencies in
argument lists of functions and/or subroutines. A de-
tailed comparison between both compilers in respect to
performance and diagnostical capabilities can be found
under www.polyhedron.com .

Performance on the two architectures

In the following the execution times of the benchmark
codes on the two architectures are presented in compar-
ison. All data is in seconds. For the Linux cluster, only
those results obtained with the Intel compiler are cited
as they are the faster ones. For the IBM Regatta the ex-
ecution times are given in dependence of the number of
employed processors. In case of the Linux cluster the re-
sults are arranged in first order with respect to the num-
ber of occupied nodes and in second order with respect
to the MPI tasks started per node.

http://www.polyhedron.com/

CPMD:

Linux cluster
nodes MPI tasks per node PEs | Regatta
1 2 4 1 119
1 67 53 56 2 60
2 34 28 26 4 28
4 17 13 14 8 14
8 9 7 6 16 7
TORB:
Linux cluster
nodes MPI tasks per node PEs | Regatta
1 2 4 1 90
1 66 42 38 2 46
2 33 21 19 4 23
4 17 12 11 8 12
8 9 7 6 16 6

GENE9: The GENE9 code is the only one of our
benchmark codes which is implemented with a mixed
MPI/OpenMP programming model. The following table
shows the execution time on the Linux cluster obtained
with the pure MPI program, i.e. when compiling the
program without the OpenMP option.

Linux cluster
nodes MPI tasks per node
1 2 4
1 6.9 4.5 4.8
2 3.5 3.0 2.4
4 1.8 1.5
8 0.9

The missing values in the table are due to the fact that
the chosen test case did not allow for more than 8 MPI
tasks. When OpenMP is added, the results for the Linux
cluster and for the IBM Regatta, respectively, are as
follows:

MPI Linux cluster IBM Regatta
tasks threads per MPI task || threads per MPI task
(nodes) 1 2 4 1 2 4
1 8.4 8.0 5.2 10.8 5.4 3.1
2 4.2 3.7 2.6 5.5 2.8 1.5
4 2.1 2.1 1.4 2.5 1.5 0.8
8 1.1 1.1 0.8 1.7 0.9 0.5

In this case, only one MPI task per node was started on
the Linux cluster.

Wien2k:
Linux cluster
nodes MPI tasks per node PEs || Regatta

1 2 4 1 28351
1 14160 | 19809 | 19129 2 20590
2 16980 | 10665 | 11637 4 10244
4 9300 8100 7357 8 5617
8 6000 5400 5867 16 2898

In case of 1 processor or 1 MPI task, respectively, the
sequential version of the code has been used, which works
with the much faster sequential LAPACK library instead
of the MPI-parallel ScaLAPACK library. This explains
the poor speedup (on both architectures) when switching
from 1 to 2 MPI processes.

SDTrimSP:
Linux cluster
nodes MPI tasks per node PEs | Regatta
1 2 4 1 846
1 503 | 259 | 271 9 | 434
2 262 144 167 4 230
4 145 96 120 8 123
8 91 83 109 16 71
Discussion

The information included in the above data is quite mani-
fold. As we are interested in a transfer of small jobs from
the Regatta to the Linux cluster the most interesting as-
pects are the evaluation of the different operation modes
on the Linux cluster and a comparison of the performance
on the two architectures.

The different modes on the Linux cluster

For all the benchmark codes the use of 2 processors
in the dual-processor node is advantageous compared to
using only 1 processor. The benefit obtained from the
second processor varies, however, a lot depending on the
code and the number of used nodes. On average, the
speedup is about 1.3. This is true for pure MPI and
mixed MPI/OpenMP codes. A remarkable performance
gain is obtained with the SDTrimSP code. Here the per-
formance of the sheer calculation is nearly doubled as can
be seen from the two processor results where the commu-
nication is more or less negligible. The reason might be
that the amount of memory required by this code is very
low (about 5 MB) so that the memory bandwidth con-
straints arising normally when both processors are active
are not an issue for this code. But after all, as none of
the codes is becoming slower, it can be recommended to
make use of both processors if possible.

The hyperthreading, however, cannot be recom-
mended in general. Although there is an overall per-
formance gain of about 10 %, there are also cases where
an overloading of the nodes with 4 processes leads to a
performance degradation (see e.g. SDTrimSP). The re-
sults obtained with the mixed MPI/OpenMP version of
the GENE9 code seem to indicate that especially the
OpenMP threads can benefit from the hyperthreading.
However, further investigations would be necessary to
confirm this assumption.

The GENE9 results show that the overhead arising from
OpenMP under Linux is first of all quite large — com-
pare the runtime for mixed MPI/OpenMP using 1 thread
per MPI task with that of the pure MPI program with

1 MPI task per node. A second thread per MPI task
which uses the second processor in the node also does
not make much effect. Only the hyperthreading, i.e. 4
threads per node and MPI task, makes this mode a bit
more efficient: The respective runtimes are comparable
with those of the pure MPI program on the same num-
ber of nodes, but they are not better. All in all, from the
performance aspect OpenMP on the Linux cluster is not
convincing up to now. It can, however, always be used
as a developing platform for the Regatta.

Comparison between the two architectures

In order to compare the two architectures the runtimes
for 1 and 16 processors, respectively, are extracted from
the above data. In case of various possibilities the best
result for the respective processor number has been cho-
sen. Note that the 1-processor result on the Linux clus-
ter refers to the case I where only one processor of the
dual-processor node is busy. The use of the second CPU
would lower the performance by about 20 %. From the
runtimes the relative performance and the speedup can
be calculated. We obtain the following results:

Execution times [s]
1 processor 16 processors
Code Xeon | Power4 | Xeon | Power4
CPMD 67 119 7.4 7.0
TORB 66 90 5.8 5.9
GENE9 8.4 10.8 0.8 0.8
Wien2k 14160 28351 || 5400 2898
SDTrimSP 519 840 83 71
relative performance Speedup

Xeon:Power 4 t1: tig
Code 1 proc. 16 proc. Xeon | Power4
CPMD 1.8 0.95 9.1 17.0
TORB 1.4 1.0 11.4 15.3
GENE9 0.8 1.0 10.5 13.5
Wien2k 2.0 0.5 2.6 9.8
SDTrimSP 1.6 0.9 6.3 11.8
average 1.5 0.9 8.0 13.5

From the sequential or 1-processor runs we learn that the
compute power of the Xeon processor is on average
about 1.5 times higher than that of the Power 4 proces-
sor. The outstanding value of 2.0 for the Wien2k code
results from the excellent LAPACK eigenvalue solver im-
plementation contained in the MKL library. Why the
GENE9 code is below average could not be clarified up
to now.

The relative performance between the 16-processor
Linux system and the 16-processor IBM Regatta system
is 0.9 on average. Note, however, that when neglecting
the Wien2k code the mean relative performance increases
to 0.96, i. e. the two systems are mainly of the same per-
formance. That the Wien2k code is that much below av-
erage is due to the high amount of communication which
can be handled much better by the IBM Regatta sys-

tem than by the Gigabit-Ethernet network of the Linux
cluster.

This latter point is also reflected in the table for the
speedup. The speedup achieved with 16 processors is
on average 8.0 for the Linux cluster and 13.5 for the
IBM Regatta. Especially for the Wien2k code, however,
the speedup obtained with the Linux cluster is very low,
namely 2.6, compared to 9.8 on the Regatta.

Conclusion

All in all, the benchmark results show clearly that for
small jobs using 16 processors the Linux cluster can be
regarded as a fully adequate alternative to the IBM Re-
gatta provided the parallel program in question is not too
communication-intensive. For smaller numbers of pro-
cessors the Linux cluster is even advantageous. With in-
creasing number of processors the better single-processor
performance of the Linux cluster is compensated more
and more by the slower communication network, until
for about 16 processors the breakeven point is reached
and the two systems perform equally well.

Renate Dohmen, Roman Hatzky
Jakob Pichlmeier, Reinhard Tisma

	Benchmark
	Codes
	Benchmark systems and methods
	Results
	Linux compilers
	Regatta-Linux

	Discussion
	Modes Linux
	Comparison

	Conclusion

